Dataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in PPGIS – is it worth the time and the costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of Northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in Northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in Northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. From random sampling designs, the participation rate is known to be relatively low, and biased to specific segments (e.g., mid-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs, but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting its use as a democracy tool for enhancing participation in development and planning. We therefore asked: How can we increase participation in online PPGIS surveys? Is it worth the time and the costs? We reviewed environmentally related, online PPGIS surveys (N=51) and analyzed the sampling biases and recruitment strategies utilized in a large scale online PPGIS platform in coastal areas of Northern Norway using both random sampling (16978 invited participants) and volunteer sampling. We found the time, effort, and costs spent to increase participation rates to yield meager results. We discuss the time and cost efficiency of different recruitment methods, as well as the implications of the low participation levels notwithstanding the recruitment methods used.
About this itemBack in 2017, I made a Cascade story map to compile GIS career resources for my current and future interns. Fast forward seven years, and I finally rebuilt it as an ArcGIS StoryMap. From job title descriptions to certifications and to salaries, it covers the main areas I find emerging professionals asking about when they're looking at a career in GIS. There are multiple shout outs to the Consortium in it too, of course.😎Author/ContributorJohn NergeOrganizationPersonal workOrg Websitehttps://bit.ly/JohnNerge
Tempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools, and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC), and with the membership, staff tracks collaborative efforts to recruit business prospects and locations. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities, and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe. This dataset provides the target and actual job creation numbers for the City of Tempe and the Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population. This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created. Additional Information Source:Contact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary Excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project explores the integration of Geographic Information Systems (GIS) and Natural Language Processing (NLP) to improve job–candidate matching in recruitment. Traditional AI-based e-recruitment systems often ignore geographic constraints. Our hybrid model addresses this gap by incorporating both textual similarity and spatial relevance in matching candidates to job postings.Data UsedCandidate Data (CVs)Source: Scraped from emploi.maSize: 1000 CVs after cleaningContent: Candidate names (anonymized), skills, experiences, locations (coordinates), availability, etc.Job DescriptionsSource: Publicly available dataset from KaggleSize: we took 1000 job postings using category :MoroccoContent: Titles, descriptions, required skills, sector labels, and office locations...All datasets have been cleaned and anonymized for privacy and research ethics compliance.
Professional Growth Management - Provide analytics on hiring and retention.
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographic information systems gis in the U.S.
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for gis in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
View the diversity of challenges and opportunities across America's counties within different types of rural regions and communities. Get statistics on people, jobs, and agriculture.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Data file GIS API Services Interactive map Zip of CSV files For complete information, please visit https://data.gov.
Dataset featuring the full-time, part-time and seasonal jobs, as well as internships posted on the City's job portal @ https://www.raleighnc.gov/jobs This dataset is updated weekdays by 9am and does not contain past (non-active) postings.
A collection of geo-enabled career profiles produced by Strivven Media and managed by the Esri Schools team. For more information, email schools@eseri.com
I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
Videos and additional details assembled by Strivven, supported by Esri.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Covered employment for the growth areas, urban centers and villages, for the City of Seattle Comprehensive Plan. This is a stand alone table that includes non-spatial records.Covered employment is reported annually from the State of Washington QCEW data.The Washington State Employment Security Department, Quarterly Census of Employment and Wages (QCEW) is a federal/state cooperative program that measures employment and wages in industries covered by unemployment insurance. Data are available by industry and county and used to evaluate labor trends, monitor major industry developments and develop training programs.
"Hi, I'm Adam Burke. I am the Lead Specialist Advisor for Geospatial at Natural Resources Wales. Read on to find out more about the work I do and how I got here."I graduated from Aberystwyth University with a BSc in Physical Geography and a MSc in Geographic Information Systems.
Dataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in an online environmental PPGIS—is it worth the time and costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. In random sampling designs, the participation rate is known to be relatively low and biased to specific segments (e.g., middle-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting their use as a democratic tool for enhancing participation in spatial planning. We therefore asked: How can we increase participation in online environmental PPGIS surveys? Is it worth the time and costs? We reviewed environmentally related online PPGIS surveys (n=26) and analyzed the sampling biases and recruitment strategies utilized in a large-scale online PPGIS platform in coastal areas of northern Norway via both random (16978 invited participants) and volunteer sampling. We found that the time, effort, and costs required to increase participation rates yielded meager results. We discuss the time and cost efficiency of different recruitment methods and the implications of participation levels despite the recruitment methods used.
GIS Programmer Job #: 1202 Jurisdiction: CMM Division: City Planning and Community Development Department: Assessment, Tax and Utility Billing
Hi, I'm Patrick,I initially pursued an undergraduate degree in Computer Science because I wanted to make video games; however, after taking an Environmental Science course, I wanted to see if there was a way I could study both. This led me to GIS and I made that my specialism, doing a Masters and later PhD on the subject.
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for forest engineering (gis) in the U.S.
PurposeThis job aid will lead the GIS analyst through the process of manually creating an incident map journal and how to create additional pages for the journal. This process should be used at the beginning of an incident and then the journal should be maintained to assure it remains viable. The incident map journal serves as a curated center to place maps, apps, and dashboards relevant to the incident.
This job aid assumes a working knowledge of how to create maps, apps, and dashboards on ArcGIS Online. For a tutorial, go to the Create apps from maps - ArcGIS Tutorial.Example workflow for the Geo-Enabled Plans Session at InSPIRE. Job Aid developed by FEMA GIS to enable GIS analysts to rapidly spin-up a standardized incident journal.
Communication and Image - To increase internal and external engagement by implementing best practices in communications, marketing, and public relations by 5%.
Dataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in PPGIS – is it worth the time and the costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of Northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in Northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in Northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. From random sampling designs, the participation rate is known to be relatively low, and biased to specific segments (e.g., mid-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs, but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting its use as a democracy tool for enhancing participation in development and planning. We therefore asked: How can we increase participation in online PPGIS surveys? Is it worth the time and the costs? We reviewed environmentally related, online PPGIS surveys (N=51) and analyzed the sampling biases and recruitment strategies utilized in a large scale online PPGIS platform in coastal areas of Northern Norway using both random sampling (16978 invited participants) and volunteer sampling. We found the time, effort, and costs spent to increase participation rates to yield meager results. We discuss the time and cost efficiency of different recruitment methods, as well as the implications of the low participation levels notwithstanding the recruitment methods used.