Surficial geology of Rock County, Minnesota. Part of the Minnesota Geologic Atlas program, Part A.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming (Hyden and others, 1968). Attribute tables and geospatial features (points, lines and polygons) conform to the Geologic Map Schema (GeMS, 2020) and represent the geologic map as published in USGS Geologic Quadrangle Map GQ-789. The 35,758-acre map area represents the geology at a publication scale of 1:24,000. References: Hyden, H.J., Houston, R.S., and King, J.S., 1968, Geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-789, scale 1:24,000, https://doi.org/10.3133/gq789. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of Precambrian metasedimentary rocks of the Medicine Bow Mountains, Albany and Carbon Counties, Wyoming (Houston and Karlstrom, 1992). Attribute tables and geospatial features (points, lines and polygons) conform to the Geologic Map Schema (GeMS, 2020) and represent the geologic map plates as published at a scale of 1:50,000. The 358,697-acre map area includes the geologically complex Medicine Bow Mountains located 30 miles (48 kilometers) west of Laramie in southeastern Wyoming. References: Houston, R.S., and Karlstrom, K.E., 1992, Geologic map of Precambrian metasedimentary rocks of the Medicine Bow Mountains, Albany and Carbon Counties, Wyoming: U.S. Geological Survey, Miscellaneous Investigations Series Map I-2280, scale 1:50,000, https://doi.org/10.3133/i2280. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A sta ...
Transmission Lines or Poles, Electric dataset current as of 2006. This is an ESRI feature class of American Transmission Company's Rock County electrical lines..
Section and quarter section lines of the PLSS for Rock County, Wisconsin. Spatial accuracy not assumed.
Oil Pipelines dataset current as of 2005. This is an ESRI feature class of Enbridge Energy's Rock County crude oil lines..
This data release includes the data used to generate histograms that compared total watershed pollutant removal efficiency (TWPRE) in the two study watersheds Crystal Rock (traditional watershed) and Tributary (Trib.) 104 low impact development (LID watershed) to determine if LID BMP design offered an improved water quality benefit. Input/calibrants data used in the model (Monte Carlo) are described in the manuscript as mentioned in the list below: -BMP Name and Type: references in the manuscript -BMP Connectivity: Proprietary (derived from Montgomery County GIS Data) -BMP Drainage Areas: Proprietary (derived from Montgomery County GIS Data) -BMP Efficiency Ranges: referenced in manuscript -Baseline Pollutant Loadings: referenced in manuscript Stormwater runoff and associated pollutants from urban areas in the Chesapeake Bay Watershed represent a serious impairment to local streams and downstream ecosystems, despite urbanized land comprising only 7% of the Bay watershed area. Excess nitrogen, phosphorus, and sediment affect local streams in the Bay watershed by causing problems ranging from eutrophication and toxic algal blooms to reduced oxygen levels and loss of biodiversity. Traditional management of urban stormwater has primarily focused on directing runoff away from developed areas as quickly as possible. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner on the landscape to treat stormwater runoff closer to its source.The objective of this research was to use a modeling approach to compare total watershed pollutant removal efficiency (TWPRE) of two watersheds with differing spatial patterns of SW BMP design (traditional and LID), and determine if LID SW BMP design offered an improved water quality benefit.
Use the app to find the downloadable area within Jackson County - 2 Foot Contour MapThe 2-foot Contour Map shows contours that were derived from several different LiDAR projects in the Rogue Valley over the last 10 years. The map can be used to both download and view the contour data. To use the map, search or zoom in to an address. When zoomed in to a specific scale, the map will change from the downloadable areas layer to 2-foot interval contour lines. The LiDAR Project Dates layer can be used to identify the date when the elevation was collected in an area. Please note that data is available only for the valley floor areas at this time.The 2ft contours were created from 1-meter pixel DEM and then cleaned to remove very small elevation changes and to create a smooth contour line. This information should not be used to create topographic surveys or other applications where the precise elevation of a location is required. For additional information on LiDAR in Oregon or to download the source data, please visit the DOGAMI Lidar Viewer.The downloadable data is a zipped ESRI Shapefile and is projected to Oregon State Plane South (Intl Feet) with NAD 1983 datum.
Sewer Service Areas in Rock County Wisconsin.
This data release includes the data used to generate sewershed "bubble plots" that compared pollutant removal efficiency (PRE) in each sewershed in the two study watersheds Crystal Rock (traditional watershed) and Tributary (Trib.) 104 low impact development (LID watershed) to determine if LID BMP design offered an improved water quality benefit as compared on a sewershed basis. Input/calibrants data used in the model (Monte Carlo) are described in the manuscript as mentioned in the list below: -BMP Name and Type: references in the manuscript -BMP Connectivity: Proprietary (derived from Montgomery County GIS Data) -BMP Drainage Areas: Proprietary (derived from Montgomery County GIS Data) -BMP Efficiency Ranges: referenced in manuscript -Baseline Pollutant Loadings: referenced in manuscript Stormwater runoff and associated pollutants from urban areas in the Chesapeake Bay Watershed represent a serious impairment to local streams and downstream ecosystems, despite urbanized land comprising only 7% of the Bay watershed area. Excess nitrogen, phosphorus, and sediment affect local streams in the Bay watershed by causing problems ranging from eutrophication and toxic algal blooms to reduced oxygen levels and loss of biodiversity. Traditional management of urban stormwater has primarily focused on directing runoff away from developed areas as quickly as possible. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner on the landscape to treat stormwater runoff closer to its source.The objective of this research was to use a modeling approach to compare total watershed pollutant removal efficiency (TWPRE) of two watersheds with differing spatial patterns of SW BMP design (traditional and LID), and determine if LID SW BMP design offered an improved water quality benefit.
Geospatial data about Williamson County Line. Export to CAD, GIS, PDF, CSV and access via API.
The ZIP file consist of GIS files with information about the excavations, findings and other metadata about the archaeological survey.
This map features satellite imagery for the world and high-resolution aerial imagery for many areas. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Imagery map service description.
This layer contains the address points within Williamson County. This layer is part of an original dataset provided and maintained by the City of Round Rock GIS/IT Department. The data in this layer are represented as points. The entity responsible for updating each address point can be found in the Updating Agency field. Addresses within Round Rock city limits are maintained regularly by Planning and Developments Services.Update Frequency: Daily
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
This layer contains the Extra-Territorial Jurisdiction (ETJ) boundaries in the City of Round Rock, located in Williamson County, Texas. This layer is part of an original dataset provided and maintained by the City of Round Rock GIS/IT Department. The data in this layer are represented as polygons.An Extra-Territorial Jurisdiction (ETJ) is the legal capability of a municipality to exercise authority beyond the boundaries of its incorporated area. In the US, Texas is one of the many states that allow cities to claim ETJ to contiguous land beyond their city limits.The data in this layer is isolated from the ETJ - Williamson County layer to include only the ETJ that applies to the City of Round Rock.
This map is designed to focus attention on your thematic content by providing a neutral background with minimal colors, labels, and features. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the Light Gray Base and Light Gray Reference.
Surveyed lines from Plats filed in the Rock County Surveyor’s Office in accordance with Wisconsin SS 59.45(1)2.
This map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the Ocean Basemap.
The purpose of this map is to assist in retrieving digitized PLSS notes and plats. Indiana has three to four sets of "original" PLSS notes and plats.The field survey set, which the field surveyor originally wrote, is preserved at the Indiana State Archive for approximately 30% of the counties in Indiana.The federal set, which the GLO transcribed, is preserved at the National Archive.The state set, which the GLO transcribed, is preserved at the Indiana State ArchiveThe county sets, transcribed later from the state set by the state auditor, are available from each county surveyor.The file name indicates the source and geographical location within the PLSS. O for the Original set F for the Federal set S for the State set C** for the County set PM0* for the 1st or 2nd Principal Meridian T**N or T**S for the Township (North & South) R**E or R**W for the Range (East & West)This project was made possible by Clayton J. Hogston, who donated over 11,000 hours to create the linked documents. Other contributors include Clayton J. Hogston – Sphere Surveying Co., Lorraine Wright – Rock Solid GIS, Rachel Savich Oser – Oser Surveying & Mapping LLC, and county surveyors with support from the Indiana State Archives, chapters of the Indiana Society of Professional Land Surveyors (ISPLS), the Indiana Geographic Information Council (IGIC), the Indiana Professional Land Surveyors Foundation (IPLSF), and others.Detailed metadata regarding the location of the physical documents within the holding institutions is available on our Internet Archive pages, where the digitized records can also be viewed or downloaded in bulk.
Surficial geology of Rock County, Minnesota. Part of the Minnesota Geologic Atlas program, Part A.