In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Santa Cruz map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Santa Cruz map area data layers. Data layers are symbolized as shown on the associated map sheets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Under contract to the Santa Cruz Mountains Stewardship Network with support from the Golden Gate National Parks Conservancy, and staffed by personnel from Tukman Geospatial, Aerial Information Systems (AIS), and Kass Green and Associates, Tukman Geospatial and Aerial Information Systems created a fine-scale vegetation map of portions of Santa Cruz and Santa Clara Counties. CDFW’s Vegetation Classification and Mapping Program (VegCAMP) provided in-kind service to allocate and score the AA. The mapping study area, consists of approximately 1,133,106.8 acres, of Santa Clara and Santa Cruz counties. Work was performed on the project between 2020 and 2023. The Santa Cruz and Santa Clara fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales and is useful to managers interested in specific information about vegetation composition and forest health. CNPS under separate contract and in collaboration with CDFW VegCAMP developed the floristic vegetation classification used for the project. The floristic classification follows protocols compliant with the Federal Geographic Data Committee (FGDC) and National Vegetation Classification Standards (NVCS). The vegetation map was produced with countywide vegetation survey data and combined with surveys from CNPS. Trimble® Ecognition® followed by manual image interpretation that was used to map lifeforms. Fine-scale segmentation was conducted using Trimble Ecognition® and relies on summer 2020 4-band NAIP, the 2020 lidar-derived canopy height model, and a suite of spectral indices derived from the NAIP. They utilized a type of algorithmic data modeling known as machine learning to automate the classification of fine-scale segments into one of Santa Cruz and Santa Clara Counties 121 fine-scale map classes. The minimum mapping unit (MMU) is set by feature type. For agricultural classes, the MMU is 1/4 acre, for woody upland classes is 1/2 acre, woody riparian is 1/4 acre, upland herbaceous is 1/2 acre, wetland herbaceous is 1/4 acre. Bare land is 1/2 acre, impervious features is 1000 square feet, while developed is 1/5 acre and water is 400 square feet. Field reconnaissance and accuracy assessment enhanced map quality. There was a total of 121 mapping classes. The overall Fuzzy Accuracy Assessment rating for the final vegetation map, map at the Alliance and Group levels, is 92 percent. More information can be found in the project report, which is bundled with the vegetation map published for BIOS here: https://filelib.wildlife.ca.gov/Public/BDB/GIS/BIOS/Public_Datasets/3100_3199/ds3116.zip.
"The Land Trust of Santa Cruz County, in cooperation with public and private interests, protects and manages lands of significant natural resource, agricultural, cultural and open space value…We see a future where the wild and working forests, the beaches and coastline, the globally unique biotic habitats and the County’s rich farming and ranching heritage—those things that define the extraordinary place we call Santa Cruz County—are preserved forever, are lovingly cared for by supportive communities and are cherished by all as an extraordinary gift that this generation has made to future generations."Conservation BlueprintThe Conservation Blueprint is the Land Trust’s 2-year assessment of the natural health of Santa Cruz County – and recommendations for the next 25 years of conservation of our natural world. Financial support was provided by the Gordon and Betty Moore Foundation, the Resources Legacy Fund, and individual donors from the Land Trust of Santa Cruz County. Community forums held as part of the Blueprint process were supported by the Community Foundation of Santa Cruz County.The Conservation Blueprint was guided by a seven- member Steering Committee.-Karen Christensen, Executive Director, Resource Conservation District of Santa Cruz County-Betsy Herbert, Watershed Analyst, San Lorenzo Valley Water District & Sempervirens Fund Board Member-Jim Rider, Apple Grower, Bruce Rider & Sons, and Land Trust of Santa Cruz County Board Member-John Ricker, Water Resources Division Manager, Santa Cruz County Environmental Health Services-Joe Schultz, Director, Santa Cruz County Parks and Recreation Department-Steve Staub, Forester, Staub Forestry and Environmental Consulting-Chris Wilmers, Assistant Professor of Environmental Studies, UC Santa CruzThe primary authors, Andrea MacKenzie, Jodi McGraw and Matt Freeman, consulted over 110 experts in preparing the report and held four community forums throughout the county. The resulting 200 page report includes 24 maps, and is available from Land Trust’s website. http://www.landtrustsantacruz.org/blueprint/The result is a 200 page document that addresses 4 major categories: Biodiversity, Water Resources, Agriculture and Recreation. The complete package with all GIS data and MXD files for 9.3 and 10.0 can be downloaded free from the Bay Area Open Space Council website: http://www.bayarealands.org/gis/.The Design of these map services was based on these original MXD's, with cartographic modifications as needed to allow the use of these layers as a map overlay.Donate now to help them implement their new blueprint in their current-year drive to protect 10,000 acres of Redwoods and hills: https://www.landtrustsantacruz.org/webdonation/donationform.htm
"The Land Trust of Santa Cruz County, in cooperation with public and private interests, protects and manages lands of significant natural resource, agricultural, cultural and open space value…We see a future where the wild and working forests, the beaches and coastline, the globally unique biotic habitats and the County’s rich farming and ranching heritage—those things that define the extraordinary place we call Santa Cruz County—are preserved forever, are lovingly cared for by supportive communities and are cherished by all as an extraordinary gift that this generation has made to future generations."Conservation BlueprintThe Conservation Blueprint is the Land Trust’s 2-year assessment of the natural health of Santa Cruz County – and recommendations for the next 25 years of conservation of our natural world. Financial support was provided by the Gordon and Betty Moore Foundation, the Resources Legacy Fund, and individual donors from the Land Trust of Santa Cruz County. Community forums held as part of the Blueprint process were supported by the Community Foundation of Santa Cruz County.The Conservation Blueprint was guided by a seven- member Steering Committee.-Karen Christensen, Executive Director, Resource Conservation District of Santa Cruz County-Betsy Herbert, Watershed Analyst, San Lorenzo Valley Water District & Sempervirens Fund Board Member-Jim Rider, Apple Grower, Bruce Rider & Sons, and Land Trust of Santa Cruz County Board Member-John Ricker, Water Resources Division Manager, Santa Cruz County Environmental Health Services-Joe Schultz, Director, Santa Cruz County Parks and Recreation Department-Steve Staub, Forester, Staub Forestry and Environmental Consulting-Chris Wilmers, Assistant Professor of Environmental Studies, UC Santa CruzThe primary authors, Andrea MacKenzie, Jodi McGraw and Matt Freeman, consulted over 110 experts in preparing the report and held four community forums throughout the county. The resulting 200 page report includes 24 maps, and is available from Land Trust’s website. http://www.landtrustsantacruz.org/blueprint/The result is a 200 page document that addresses 4 major categories: Biodiversity, Water Resources, Agriculture and Recreation. The complete package with all GIS data and MXD files for 9.3 and 10.0 can be downloaded free from the Bay Area Open Space Council website: http://www.bayarealands.org/gis/.The Design of these map services was based on these original MXD's, with cartographic modifications as needed to allow the use of these layers as a map overlay.Donate now to help them implement their new blueprint in their current-year drive to protect 10,000 acres of Redwoods and hills: https://www.landtrustsantacruz.org/webdonation/donationform.htm
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Pigeon Point to South Monterey Bay Region includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both vid... Visit https://dataone.org/datasets/16c49a65-baae-4ef4-a2be-32655fce18ab for complete metadata about this dataset.
This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County
"The Land Trust of Santa Cruz County,
in cooperation with public and private interests, protects and
manages lands of significant natural resource, agricultural, cultural
and open space value…We see a future where the wild and working
forests, the beaches and coastline, the globally unique biotic
habitats and the County’s rich farming and ranching heritage—those
things that define the extraordinary place we call Santa Cruz
County—are preserved forever, are lovingly cared for by supportive
communities and are cherished by all as an extraordinary gift that
this generation has made to future generations."Conservation BlueprintThe
Conservation Blueprint is the Land Trust’s 2-year assessment of the
natural health of Santa Cruz County – and recommendations for the next
25 years of conservation of our natural world. Financial support was
provided by the Gordon and Betty Moore Foundation, the Resources
Legacy Fund, and individual donors from the Land Trust of Santa Cruz
County. Community forums held as part of the Blueprint process were
supported by the Community Foundation of Santa Cruz County.The Conservation Blueprint was guided by a seven- member Steering Committee.-Karen Christensen, Executive Director, Resource Conservation District of Santa Cruz County-Betsy Herbert, Watershed Analyst, San Lorenzo Valley Water District & Sempervirens Fund Board Member-Jim Rider, Apple Grower, Bruce Rider & Sons, and Land Trust of Santa Cruz County Board Member-John Ricker, Water Resources Division Manager, Santa Cruz County Environmental Health Services-Joe Schultz, Director, Santa Cruz County Parks and Recreation Department-Steve Staub, Forester, Staub Forestry and Environmental Consulting-Chris Wilmers, Assistant Professor of Environmental Studies, UC Santa CruzThe
primary authors, Andrea MacKenzie, Jodi McGraw and Matt Freeman,
consulted over 110 experts in preparing the report and held four
community forums throughout the county. The resulting 200 page report
includes 24 maps, and is available from Land Trust’s website.
http://www.landtrustsantacruz.org/blueprint/The result is a 200
page document that addresses 4 major categories: Biodiversity, Water
Resources, Agriculture and Recreation. The complete package with all
GIS data and MXD files for 9.3 and 10.0 can be downloaded free from the
Bay Area Open Space Council website:
http://www.bayarealands.org/gis/.The Design of these map
services was based on these original MXD's, with cartographic
modifications as needed to allow the use of these layers as a map
overlay.Donate now
to help them implement their new blueprint in their current-year
drive to protect 10,000 acres of Redwoods and hills:
https://www.landtrustsantacruz.org/webdonation/donationform.htm
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands†from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Aptos map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photogra... Visit https://dataone.org/datasets/23730b0d-26c5-4213-bb30-bd37e9dc7760 for complete metadata about this dataset.
Santa Cruz Cons Blueprint ALL test2 EDIT APP"The Land Trust of Santa Cruz County,
in cooperation with public and private interests, protects and manages
lands of significant natural resource, agricultural, cultural and open
space value…We see a future where the wild and working forests, the
beaches and coastline, the globally unique biotic habitats and the
County’s rich farming and ranching heritage—those things that define the
extraordinary place we call Santa Cruz County—are preserved forever,
are lovingly cared for by supportive communities and are cherished by
all as an extraordinary gift that this generation has made to future
generations."Conservation BlueprintThe
Conservation Blueprint is the Land Trust’s 2-year assessment of the
natural health of Santa Cruz County – and recommendations for the next
25 years of conservation of our natural world. Financial support was
provided by the Gordon and Betty Moore Foundation, the Resources Legacy
Fund, and individual donors from the Land Trust of Santa Cruz County.
Community forums held as part of the Blueprint process were supported by
the Community Foundation of Santa Cruz County.The Conservation Blueprint was guided by a seven- member Steering Committee.-Karen Christensen, Executive Director, Resource Conservation District of Santa Cruz County-Betsy Herbert, Watershed Analyst, San Lorenzo Valley Water District & Sempervirens Fund Board Member-Jim Rider, Apple Grower, Bruce Rider & Sons, and Land Trust of Santa Cruz County Board Member-John Ricker, Water Resources Division Manager, Santa Cruz County Environmental Health Services-Joe Schultz, Director, Santa Cruz County Parks and Recreation Department-Steve Staub, Forester, Staub Forestry and Environmental Consulting-Chris Wilmers, Assistant Professor of Environmental Studies, UC Santa CruzThe
primary authors, Andrea MacKenzie, Jodi McGraw and Matt Freeman,
consulted over 110 experts in preparing the report and held four
community forums throughout the county. The resulting 200 page report
includes 24 maps, and is available from Land Trust’s website.
http://www.landtrustsantacruz.org/blueprint/The result is a 200
page document that addresses 4 major categories: Biodiversity, Water
Resources, Agriculture and Recreation. The complete package with all
GIS data and MXD files for 9.3 and 10.0 can be downloaded free from the
Bay Area Open Space Council website: http://www.bayarealands.org/gis/.The
Design of these map services was based on these original MXD's, with
cartographic modifications as needed to allow the use of these layers as
a map overlay.Donate now
to help them implement their new blueprint in their current-year drive
to protect 10,000 acres of Redwoods and hills:
https://www.landtrustsantacruz.org/webdonation/donationform.htm
On November 7, 2021, NV5 collected Quality Level 1 (QL1) lidar data across the preliminary CAL FIRE defined fire perimeter for the CZU lightning complex fire in San Mateo and Santa Cruz counties. The technical report for the lidar data collection is available here: https://fuelsmapping.com/czu_postfire_lidar_report From the QL1 postfire lidar, NV5 and Tukman Geospatial developed a set of derivatives. These derivatives are a Digital Terrain Model (DTM), a Digital Surface Model (DSM), a Hillshade derived from the DTM, a lidar intensity image, a Normalized Digital Surface Model (nDSM), a Canopy Cover raster, and a lidar intensity image. The derivatives will be used to study the effects of the CZU wildfire on the natural landscape, forests, and shrublands of Santa Cruz and San Mateo Counties. The lidar derivatives are provided as GeoTiffs available for download from ArcGIS Online and as dynamic image services. Table 1 provides more information (including download information) for the derivatives produced. The GeoTiffs can be used in desktop GIS software packages such as ArcGIS Pro and ERDAS Imagine; the image services can be used in web maps and web mapping applications by both GIS users and non-GIS users. Table 1. lidar derivatives for the CZU lightning fire footprint in San Mateo and Santa Cruz Counties
Dataset
Description
Link to GeoTiff
Link to Image Service
Digital Terrain Model (DTM)
Hydroflattened digital terrain model. Pixel values represent elevation above sea level of the ground.
https://vegmap.press/czu_postfire_dtm_tif
https://vegmap.press/czu_postfire_dtm
Digital Surface Model (DSM)
Pixel values in the DSM represent elevations above sea level of the ‘highest hit’ surface. The DSM provides elevation above sea level of the top of the tree canopy, the top of buildings, and the top of other features.
https://vegmap.press/czu_postfire_dsm_tif
https://vegmap.press/czu_postfire_dsm
Hillshade
The hillshade is derived from the DTM and provides a ‘shaded relief’ visualization of the earth’s surface.
https://vegmap.press/czu_postfire_hillshade_tif
https://vegmap.press/czu_postfire_hillshade
Lidar Intensity
Lidar intensity, scaled to 8-bit resolution.
https://vegmap.press/czu_postfire_intensity_tif
https://vegmap.press/czu_postfire_lidar_intensity
Normalized Digital Surface Model (nDSM)
In the nDSM, pixel values represent the maximum normalized height in feet of features such as vegetation and structures. For areas with aboveground features, pixel values represent the aboveground height of the tallest part of the feature in the 3x3 foot pixel. For areas with no aboveground features, the nDSM has pixel values of 0.
https://vegmap.press/czu_postfire_nDSM_tif
https://vegmap.press/czu_postfire_nDSM
Canopy Height Model
The canopy height model is the normalized digital surface model, with building footprints and a small buffer surrounding them set to 0 normalized height. Building footprint data came from the prefire CHM. The datasheet for the prefire CHM is available here: https://vegmap.press/sc_chm As such, this raster mostly represents the aboveground height of the vegetation canopy. Note that it also includes some noise (e.g., powerlines and other objects that are not vegetation), as well as some structures that weren't captured as building footprints.
https://vegmap.press/czu_postfire_chm_tif
https://vegmap.press/czu_postfire_chm
Canopy Cover
This is the Canopy Height Model, thresholded to show pixel values greater than or equal to 15 feet aboveground as 1, and all other areas as 0. As such, it is a proxy for tree canopy cover.
https://vegmap.press/czu_postfire_cc_tif
https://vegmap.press/czu_postfire_cc
Related Datasets: The QL1 point cloud, from which these deliverables were acquired, is available as laz files. The laz files are downloadable by tile. See this datasheet for more information: CZU postfire QL1 point cloudCZU postfire 4-band imagery
Historical imagery courtesy UC Santa Cruz Library Digital Collections. Aerial photos georeferenced and mosaiced in ArcGIS and published as tiled image layers in ArcGIS Online.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Santa Cruz map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Santa Cruz map area data layers. Data layers are symbolized as shown on the associated map sheets.