100+ datasets found
  1. Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI_geomorphology digital map) adapted from a Rutgers University, Institute of Marine and Coastal Sciences NPS/NRSS/GRD/NRR map by Psuty, McDermott, Hudacek, Gagnon, Towle, Robertson, Spahn, Patel, and Schmelz (2016) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-yo
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geomorphology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University, Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geomorphology_metadata.txt or sahi_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.1 meters or 16.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    United States, Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    ADA GIS

    • mdc.hub.arcgis.com
    Updated Aug 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miami-Dade County, Florida (2018). ADA GIS [Dataset]. https://mdc.hub.arcgis.com/maps/98ef03762d1b4631aa7da93ba0382369
    Explore at:
    Dataset updated
    Aug 1, 2018
    Dataset authored and provided by
    Miami-Dade County, Florida
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This webmap is used by Miami Dade GIS applications to search and display geographic data as a text-only version.https://gisweb.miamidade.gov/ada application uses the web map configuration to create a custom feature layer search and list the data as text-only.

  4. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  5. g

    Aids to Navigation (ATONS) GIS data from the Gulf of America and coastal...

    • gimi9.com
    • catalog.data.gov
    Updated Oct 29, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). Aids to Navigation (ATONS) GIS data from the Gulf of America and coastal waters of Alabama, Florida, Louisiana, Mississippi and Texas as of 1999-10-21 (NCEI Accession 0000599) [Dataset]. https://gimi9.com/dataset/data-gov_b5d142369f5335c7440209eebd8fd05fadd516f7/
    Explore at:
    Dataset updated
    Oct 29, 2001
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Gulf of Mexico (Gulf of America)
    Description

    This dataset contains a GIS database of Aids to Navigation in the Gulf of America and coastal waters of Alabama, Florida, Louisiana, Mississippi and Texas. These data were compiled on 1999-10-21. The term "Aids to Navigation" (ATONS or AIDS) refers to a device outside of a vessel used to assist mariners in determining their position or safe course, or to warn them of obstructions. AIDS to navigation include lighthouses, lights, buoy, sound signals, landmarks, RACONs, radio beacons, LORAN, and omega. These include AIDS which are installed and maintained by the Coast Guard as well as privately installed and maintained aids (permit required). This does not include unofficial AIDS (illegal) such as stakes, PVC pipes, and such placed without permission. Each USCG District Headquarters is responsible for updating their database on an "as needed" basis. When existing AIDS are destroyed or relocated and new AIDS are installed the database is updated. Each AID is assigned an official "light listing number". The light list is a document listing the current status of ATONS and it is published and distributed on a regular basis. Interim changes to the light list are published in local Notices to Mariners which are the official means which navigators are supposed to keep their charts current. In addition, the USCG broadcasts Notices to Mariners on the marine band radio as soon as changes of the status of individual AIDS are reported. The light list number and local Notices to Mariners reports are suggested ways to keep the database current on a regular or even "real time" basis. However, annual (or more frequent) updates of the entire dataset may be obtained from each USCG District Headquarters. Geographic Information System (GIS) software is required to display the data in this NCEI accession.

  6. l

    SMMNA GIS Data Layers

    • data.lacounty.gov
    • egis-lacounty.hub.arcgis.com
    • +1more
    Updated Feb 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). SMMNA GIS Data Layers [Dataset]. https://data.lacounty.gov/datasets/smmna-gis-data-layers
    Explore at:
    Dataset updated
    Feb 2, 2022
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in mapping and analysis for the Santa Monica Mountains North Area Plan, which was adopted by the Board of Supervisors on May 4, 2021. Below are some links to important documents and to actually GIS data.Plan Website - This has links to the actual plan, maps and all project related materials. Click here for website.Online Web Mapping Application - This is the online application that shows all of the layers associated with the plan. These are the same layers that will be available for download below. Click here for the web mapping application.GIS Layers - The main GIS layers used in the application are available below.Below is a list of the GIS layers provided (shapefile format):Environmental (Zipped - 4.4 MB - click here)Habitat Connectivity - Essential Connectivity Area (ECA)Vegetation Sensitivity (includes ArcGIS .lyr file for version 10.0 and higher)Scenic Resources (Zipped - 1.3 MB - click here)State-Designated Scenic Highway 200-foot buffer (Please see 'State-Designated Scenic Highway' on our Open Data site here)Scenic RouteScenic Route 200-foot buffer

  7. n

    Aids to Navigation (ATONS) GIS data from the Gulf of Mexico and coastal...

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    not provided
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Aids to Navigation (ATONS) GIS data from the Gulf of Mexico and coastal waters of Alabama, Florida, Louisiana, Mississippi and Texas as of 1999-10-21 (NCEI Accession 0000599) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2089376009-NOAA_NCEI/1
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Mar 14, 2025
    Time period covered
    Jan 1, 1999 - Oct 21, 1999
    Area covered
    Description

    This accession contains a GIS database of Aids to Navigation in the Gulf of Mexico and coastal waters of Alabama, Florida, Louisiana, Mississippi and Texas. These data were compiled on 1999-10-21.

    The term "Aids to Navigation" (ATONS or AIDS) refers to a device outside of a vessel used to assist mariners in determining their position or safe course, or to warn them of obstructions. AIDS to navigation include lighthouses, lights, buoy, sound signals, landmarks, racons, radio beacons, LORAN, and omega. These include AIDS which are installed and maintained by the Coast Guard as well as privately installed and maintained aids (permit required). This does not include unofficial AIDS (illegal) such as stakes, PVC pipes, and such placed without permission.

    Each USCG District Headquarters is responsible for updating their database on an "as needed" basis. When existing AIDS are destroyed or relocated and new AIDS are installed the database is updated. Each AID is assigned an official "light listing number". The light list is a document listing the current status of ATONS and it is published and distributed on a regular basis. Interim changes to the light list are published in local Notices to Mariners which are the official means which navigators are supposed to keep their charts current. In addition, the USCG broadcasts Notices to Mariners on the marine band radio as soon as changes of the status of individual AIDS are reported.

    The light list number and local Notices to Mariners reports are suggested ways to keep the database current on a regular or even "real time" basis. However, annual (or more frequent) updates of the entire dataset may be obtained from each USCG District Headquarters.

    Geographic Information System (GIS) software is required to display the data in this NCEI accession.

  8. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  9. d

    Deicing Material Storage Facilities

    • catalog.data.gov
    • anrgeodata.vermont.gov
    • +4more
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fluidstate Consulting (2024). Deicing Material Storage Facilities [Dataset]. https://catalog.data.gov/dataset/deicing-material-storage-facilities
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset provided by
    Fluidstate Consulting
    Description

    Mapping of deicing material storage facilities in the Lake Champlain Basin was conducted during the late fall and winter of 2022-23. 126 towns were initially selected for mapping (some divisions within the GIS towns data are unincorporated “gores”). Using the list of towns, town clerk contact information was obtained from the Vermont Secretary of State’s website, which maintains a database of contact information for each town.Each town was contacted to request information about their deicing material storage locations and methods. Email and telephone scripts were developed to briefly introduce the project and ask questions about the address of any deicing material storage locations in the town, type of materials stored at each site, duration of time each site has been used, whether materials on site are covered, and the type of surface the materials are stored on, if any. Data were entered into a geospatial database application (Fulcrum). Information was gathered there and exported as ArcGIS file geodatabases and Comma Separated Values (CSV) files for use in Microsoft Excel. Data were collected for 118 towns out of the original 126 on the list (92%). Forty-three (43) towns reported that they are storing multiple materials types at their facilities. Four (4) towns have multiple sites where they store material (Dorset, Pawlet, Morristown, and Castleton). Of these, three (3) store multiple materials at one or both of their sites (Pawlet, Morristown, and Castleton). Where towns have multiple materials or locations, the record information from the overall town identifier is linked to the material stored using a unique ‘one-to-many’ identifier. Locations of deicing material facilities, as shown in the database, were based on the addresses or location descriptions provided by town staff members and was verified only using the most recent aerial imagery (typically later than 2018 for all towns). Locations have not been field verified, nor have site conditions and infrastructure or other information provided by town staff.Dataset instructions:The dataset for Deicing Material Storage Facilities contains two layers – the ‘parent’ records titled ‘salt_storage’ and the ‘child’ records titled ‘salt_storage_record’ with attributes for each salt storage site. This represents a ‘one-to-many’ data structure. To see the attributes for each salt storage site, the user needs to Relate the data. The relationship can be accomplished in GIS software. The Relate needs to be built on the following fields:‘salt_storage’: ‘fulcrum_id’‘salt_storage_record: ‘fulcrum_parent_id’This will create a one-to-many relationship between the geographic locations and the attributes for each salt storage site.

  10. Geo List (Mature)

    • cityofdentongishub-dentontxgis.hub.arcgis.com
    Updated Sep 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2016). Geo List (Mature) [Dataset]. https://cityofdentongishub-dentontxgis.hub.arcgis.com/items/cd4cafe32ec045ffabc019a30f16949e
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geo List is a configurable app template that allows you to present an ordered list of features based on the values of a field. Users can page through the feature one at a time.When authoring the app, keep in mind that the content displayed for each feature in the list is derived from the pop-up that has been authored in the web map. If you do not like the way it is presented then modify the pop-up in the map for the Ranking Layer. For more information on authoring pop-up content see this ArcGIS Help topic or this Get Started Lesson. Configurable OptionsUse Geo List to present a web map and configure it using the following options:Title, Descriptive or narrative text panel.Color theme for description panel, text, and selection symbol, Custom CSS option to override the application stylesheet.Ranking Layer is the feature layer that containes the features which will be ranked.Ranking Field this is the attribute that the ranking will be based upon.Number of feature presented in the list.Rank Order can be ascending or descending. Use this to define your list based on lowest to highest values or highest to lowest values within the ranking field.Zoom level will control the level of detail at which the ranked features will be displayed.Use CasesCreate a top ten list of a key demographic phenomenon.Entice users to explore the world's deadliest volcanos through a listicle type experience.Create a simple tour of locations in your area based on the order of an attribute.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsIn order to rank features for display the specified feature service must support the supportsOrderBy property which is available if the service is version 10.1 or greater.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  11. n

    ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project...

    • nbam.ntia.gov
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBAM_Org (2024). ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package [Dataset]. https://nbam.ntia.gov/content/37fa42c6313e4bdb9d8a9c05d2624891
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    NBAM_Org
    Description

    The ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package includes all of the layers that are in the NTIA Permitting and Environmental Information Application as well as the APPEIT Tool which will allow users to input a project area and determine what layers from the application overlap with it. An overview of the project package and the APPEIT tool is provided below.

    User instructions on how to use the tool are available here. A video explaining how to use the Project Package is also available here.

    Project Package Overview

    This map package includes all of the layers from the NTIA Permitting and Environmental Information Application. The layers included are all feature services from various Federal and State agencies. The map package was created with ArcGIS Pro 3.4.0. The map package was created to allow users easy access to all feature services including symbology. The map package will allow users to avoid downloading datasets individually and easily incorporate into their own GIS system. The map package includes three maps.

    1. Permitting and Environmental Information Application Layers for GIS Analysis - This map includes all of the map tabs shown in the application, except State Data which is provided in another tab. This map includes feature services that can be used for analysis with other project layers such as a route or project area.

    2. Permitting and Environmental Information Application Layers – For Reference Only - This map includes layers that cannot be used for analysis since they are either imagery or tile layers.

    3. State Data - Reference Only - This map includes all relevant state data that is shown in the application.

    The NTIA Permitting and Environmental Information Application was created to help with your permitting planning and environmental review preparation efforts by providing access to multiple maps from publicly available sources, including federal review, permitting, and resource agencies. The application should be used for informational purposes only and is intended solely to assist users with preliminary identification of areas that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements. Multiple maps are provided in the application which are created from public sources. This application does not have an exhaustive list of everything you need for permitting or environmental review for a project but is an initial starting point to see what might be required.

    APPEIT Tool OverviewThe Department of Commerce’s National Telecommunications and Information Administration (NTIA) is providing the ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) to help federal broadband grant recipients and subgrantees identify permits and environmental factors as they plan routes for their broadband deployments. Identifying permit requirements early, initiating pre-application coordination with permitting agencies, and avoiding environmental impacts help drive successful infrastructure projects. NTIA’s public release of the APPEIT tool supports government-wide efforts to improve permitting and explore how online and digital technologies can promote efficient environmental reviews.

    This Esri ArcGIS Pro tool is included in the map package and was created to support permitting, planning, and environmental review preparation efforts by providing access to data layers from publicly available sources, including federal review, permitting, and resource agencies. An SOP on how to use the tool is available here. For the full list of APPEIT layers, see Appendix Table 1 in the SOP. The tool is comprised of an ArcGIS Pro Project containing a custom ArcGIS Toolbox tool, linked web map shared by the NTIA’s National Broadband Map (NBAM), a report template, and a Tasks item to guide users through using the tool. This ArcGIS Pro project and its contents (maps and data) are consolidated into this (.ppkx) project file.

    To use APPEIT, users will input a project area boundary or project route line in a shapefile or feature class format. The tool will return as a CSV and PDF report that lists any federal layers from the ArcGIS Pro Permitting and Environmental Information Web Map that intersect the project. Users may only input a single project area or line at a time; multiple projects or project segments will need to be screened separately. For project route lines, users are required to specify a buffer distance. The buffer distance that is used for broadband projects should be determined by the area of anticipated impact and should generally not exceed 500 feet. For example, the State of Maryland recommends a 100-foot buffer for broadband permitting. The tool restricts buffers to two miles to ensure relevant results.

    Disclaimer

    This document is intended solely to assist federal broadband grant recipients and subgrantees in better understanding Infrastructure Investment and Jobs Act (IIJA) broadband grant programs and the requirements set forth in the Notice of Funding Opportunity (NOFO) for this program. This document does not and is not intended to supersede, modify, or otherwise alter applicable statutory or regulatory requirements, the terms and conditions of the award, or the specific application requirements set forth in the NOFO. In all cases, statutory and regulatory mandates, the terms and conditions of the award, the requirements set forth in the NOFO, and follow-on policies and guidance, shall prevail over any inconsistencies contained in this document.

    NTIA’s ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) should be used for informational purposes only and is intended solely to assist users with preliminary identification of broadband deployments that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements.

    The tool is not an exhaustive or complete resource and does not and is not intended to substitute for, supersede, modify, or otherwise alter any applicable statutory or regulatory requirements, or the specific application requirements set forth in any NTIA NOFO, Terms and Conditions, or Special Award Condition. In all cases, statutory and regulatory mandates, and the requirements set forth in NTIA grant documents, shall prevail over any inconsistencies contained in these templates.

    The tool relies on publicly available data available on the websites of other federal, state, local, and Tribal agencies, and in some instances, private organizations and research institutions. Layers identified with a double asterisk include information relevant to determining if an “extraordinary circumstance” may warrant more detailed environmental review when a categorical exclusion may otherwise apply. While NTIA continues to make amendments to its websites to comply with Section 508, NTIA cannot ensure Section 508 compliance of federal and non-federal websites or resources users may access from links on NTIA websites.

    All data is presented “as is,” “as available” for informational purposes. NTIA does not warrant the accuracy, adequacy, or completeness of this information and expressly disclaims liability for any errors or omissions.

    Please e-mail NTIAanalytics@ntia.gov with any questions.

  12. a

    Florida COVID19 06292020 ByZip CSV

    • hub.arcgis.com
    • covid19-usflibrary.hub.arcgis.com
    Updated Jun 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2020). Florida COVID19 06292020 ByZip CSV [Dataset]. https://hub.arcgis.com/datasets/275b55f06ce34b35aca0684ab4499db8
    Explore at:
    Dataset updated
    Jun 29, 2020
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Florida
    Description

    Florida COVID-19 Cases by Zip Code exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/.https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_Cases_Zips_COVID19/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Q. How is the zip code assigned to a person or case? Cases are counted in a zip code based on residential or mailing address, or by healthcare provider or lab address if other addresses are missing.Q. Why is the city data and the zip code data different? The zip code data is supplied to a healthcare worker, case manager, or lab technician by each individual during intake when a test is first recorded. When entering a zip code, the system we use automatically produces a list of cities within that zip code for the individual to further specify where they live. Sometimes the individual uses the postal city, which may be Miami, when in reality that person lives outside the City of Miami boundaries in the jurisdiction of Coral Gables. Many zip codes contain multiple city/town jurisdictions, and about 20% of zip codes overlap more than one county. Q: How is the Zip Code data calculated and/or shown? If a COUNTY has five or more cases (total): • In zip codes with fewer than 5 cases, the total number of cases is shown as “<5”. • Zip codes with 0 cases in these counties are “0" or "No cases.” • All values of 5 or greater are shown by the actual number of cases in that zip code. If a COUNTY has fewer than five total cases across all of its zip codes, then ALL of the zip codes within that county show the total number of cases as "Suppressed." Q: My zip code says "SUPPRESSED" under cases. What does that mean? IF Suppressed: This county currently has fewer than five cases across all zip codes in the county. In an effort to protect the privacy of our COVID-19-Positive residents, zip code data is only available in counties where five or more cases have been reported. Q: What about PO Box zip codes, or zip codes with letters, like 334MH? PO Box zip codes are not shown in the map. “Filler” zip codes with letters, like 334MH, are typically areas where no or very few people live – like the Florida Everglades, and are shown on the map like any other zip code. Key Data about Cases by Zip Code: ZIP = The zip code COUNTYNAME = The county for the zip code (multi-part counties have been split) ZIPX = The unique county-zip identifier used to pair the data during updates POName = The postal address name assigned to the zip code place_labels = A list of the municipalities intersecting the zip code boundary c_places = The list of cities cases self-reported as being residents of Cases_1 = The number of cases in each zip code, with conditions*LabelY = A calculated field for map display only. All questions regarding this dataset should be directed to the Florida Department of Health.

  13. c

    salt storage record table

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fluidstate Consulting (2024). salt storage record table [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/salt-storage-record
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset provided by
    Fluidstate Consulting
    Description

    Mapping of deicing material storage facilities in the Lake Champlain Basin was conducted during the late fall and winter of 2022-23. 126 towns were initially selected for mapping (some divisions within the GIS towns data are unincorporated “gores”). Using the list of towns, town clerk contact information was obtained from the Vermont Secretary of State’s website, which maintains a database of contact information for each town.Each town was contacted to request information about their deicing material storage locations and methods. Email and telephone scripts were developed to briefly introduce the project and ask questions about the address of any deicing material storage locations in the town, type of materials stored at each site, duration of time each site has been used, whether materials on site are covered, and the type of surface the materials are stored on, if any. Data were entered into a geospatial database application (Fulcrum). Information was gathered there and exported as ArcGIS file geodatabases and Comma Separated Values (CSV) files for use in Microsoft Excel. Data were collected for 118 towns out of the original 126 on the list (92%). Forty-three (43) towns reported that they are storing multiple materials types at their facilities. Four (4) towns have multiple sites where they store material (Dorset, Pawlet, Morristown, and Castleton). Of these, three (3) store multiple materials at one or both of their sites (Pawlet, Morristown, and Castleton). Where towns have multiple materials or locations, the record information from the overall town identifier is linked to the material stored using a unique ‘one-to-many’ identifier. Locations of deicing material facilities, as shown in the database, were based on the addresses or _location descriptions provided by town staff members and was verified only using the most recent aerial imagery (typically later than 2018 for all towns). Locations have not been field verified, nor have site conditions and infrastructure or other information provided by town staff.Dataset instructions:The dataset for Deicing Material Storage Facilities contains two layers – the ‘parent’ records titled ‘salt_storage’ and the ‘child’ records titled ‘salt_storage_record’ with attributes for each salt storage site. This represents a ‘one-to-many’ data structure. To see the attributes for each salt storage site, the user needs to Relate the data. The relationship can be accomplished in GIS software. The Relate needs to be built on the following fields:‘salt_storage’: ‘fulcrum_id’‘salt_storage_record: ‘fulcrum_parent_id’This will create a one-to-many relationship between the geographic locations and the attributes for each salt storage site.

  14. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Santa Rosa Island, California
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. Global GIS Market in the Telecommunication Industry 2014-2018

    • technavio.com
    Updated Sep 15, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2014). Global GIS Market in the Telecommunication Industry 2014-2018 [Dataset]. https://www.technavio.com/report/global-gis-market-in-the-telecommunication-industry-2014-2018
    Explore at:
    Dataset updated
    Sep 15, 2014
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img { margin: 10px !important; } About GIS

    A GIS is a system or a set of tools used to interpret business and geospatial data. It integrates hardware, software, and data for processing business and geographically referenced data. This system digitizes the received geospatial data and processes them to provide the desired output. GIS is used across various sectors, such as Natural Resources, Utilities, Federal Government, Communication and Telecom, Military/Law Enforcement, and Others, for various purposes such as disaster management, finding location details, viewing maps, marketing, designing facilities, and others. TechNavio's analysts forecast the GIS market in the Telecommunication industry to grow at a CAGR of 10.89 percent over the period 2013-2018.

    Covered in this Report The GIS market in the Telecommunication industry can be divided into three product segments: Software, Data, and Services. TechNavio's report, the GIS Market in the Telecommunication Industry 2014-2018, has been prepared based on an in-depth market analysis with inputs from industry experts. The report covers the global region; it also covers the GIS market landscape and its growth prospects in the coming years. The report also includes a discussion of the key vendors operating in this market.

    Key Vendors • Esri • Hexagon • MacDonald, Dettwiler and Associates

    Other Prominent Vendors • Autodesk • Bentley Systems • Digital Globe • GE Energy • Pitney Bowes

    Key Market Driver • Increase in the Need for Real-time Knowledge on Network Structure • For a full, detailed list, view our report

    Key Market Challenge • Growing Popularity of Open-source Software • For a full, detailed list, view our report

    Key Market Trend • Increased Usage of GIS in Broadcasting • For a full, detailed list, view our report

    Key Questions Answered in this Report • What will the market size be in 2018 and what will the growth rate be? • What are the key market trends? • What is driving this market? • What are the challenges to market growth? • Who are the key vendors in this market space? • What are the market opportunities and threats faced by the key vendors? • What are the strengths and weaknesses of the key vendors

  16. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  17. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  18. g

    Ward Offices - Shapefiles (Deprecated May 2015) | gimi9.com

    • gimi9.com
    Updated May 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Ward Offices - Shapefiles (Deprecated May 2015) | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_ward-offices-shapefiles-deprecated-may-2015
    Explore at:
    Dataset updated
    May 18, 2015
    Description

    OUTDATED. See the current data at https://data.cityofchicago.org/d/fwns-qqic -- To view or use these files, compression software and special GIS software, such as ESRI ArcGIS, is required. To download, right-click the "Download" link above and choose "Save link as." This version of the data was posted 8/8/2012 and stayed live until 7/16/2015, when it was replaced with the list of aldermen inaugurated 5/18/2015, after allowing time for most office space arrangements to be finalized.

  19. a

    Business Licenses - All

    • arc-garc.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Sep 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The City of Alpharetta (2022). Business Licenses - All [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/alpharetta::business-licenses-all
    Explore at:
    Dataset updated
    Sep 15, 2022
    Dataset authored and provided by
    The City of Alpharetta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    A listing of current business licenses in the City of Alpharetta. Most items in this dataset are associated with a spatial location and can be plotted in GIS software, however some features may not be tied to a location, and therefore may appear to plot outside of the Alpharetta city limits.

  20. c

    Niagara Open Data

    • catalog.civicdataecosystem.org
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Niagara Open Data [Dataset]. https://catalog.civicdataecosystem.org/dataset/niagara-open-data
    Explore at:
    Dataset updated
    May 13, 2025
    Description

    The Ontario government, generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Open Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular organization, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. Read more about previewing data. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Have a look at our walk-through of how to make a chart in the catalogue. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or applications (including HTML, XML, Excel, etc.). The database file can be converted to a CSV/TXT to make the data machine-readable, but human-readable formatting will be lost. How to access the data: Open with Microsoft Office Access (a database management system used to develop application software). A file that keeps the original layout and

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI_geomorphology digital map) adapted from a Rutgers University, Institute of Marine and Coastal Sciences NPS/NRSS/GRD/NRR map by Psuty, McDermott, Hudacek, Gagnon, Towle, Robertson, Spahn, Patel, and Schmelz (2016) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-yo
Organization logo

Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI_geomorphology digital map) adapted from a Rutgers University, Institute of Marine and Coastal Sciences NPS/NRSS/GRD/NRR map by Psuty, McDermott, Hudacek, Gagnon, Towle, Robertson, Spahn, Patel, and Schmelz (2016)

Explore at:
Dataset updated
Jun 5, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Description

The Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geomorphology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University, Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geomorphology_metadata.txt or sahi_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.1 meters or 16.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu