100+ datasets found
  1. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  3. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. a

    Open Data QGIS Map

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    Updated Jan 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2019). Open Data QGIS Map [Dataset]. https://hub.arcgis.com/content/710eba02b62d4d7c9149671be23fa478
    Explore at:
    Dataset updated
    Jan 16, 2019
    Dataset authored and provided by
    Eaton County Michigan
    Description

    QGIS 3 map of Eaton County, Michigan, USA with:ParcelsBuilding FootprintsSite Address PointsPolling PlacesCounty DistrictsControl CornersTownshipsSectionsGeopolitical AreasRoadsFlowlinesCounty DrainsWaterbodiesCountyAerial 2015 map service * The data in the map is stored in a geopackage called "geodata.gpkg" which should be kept in the same folder as the map "OpenData.qgz" in order to maintain the map's connectivity to the data sources. You will need the free GIS software QGIS installed to view this map. It's available at https://qgis.org

  5. c

    Global GIS Mapping Software Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global GIS Mapping Software Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/gis-mapping-software-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global GIS Mapping Software market size 2025 was XX Million. GIS Mapping Software Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.

  6. d

    CoC GIS Tools (GIS Tool).

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Mar 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). CoC GIS Tools (GIS Tool). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/654871605908414e8925b5d44771ba4f/html
    Explore at:
    Dataset updated
    Mar 15, 2015
    Description

    description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.

  7. a

    OpenStreetMap

    • africageoportal.com
    • data.baltimorecity.gov
    • +46more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://www.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  8. I

    Indoor GIS Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Indoor GIS Software Report [Dataset]. https://www.marketresearchforecast.com/reports/indoor-gis-software-30586
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Indoor GIS Software market is experiencing robust growth, driven by the increasing need for precise location-based services within enclosed spaces. The market, valued at approximately $1.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $5 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of smart buildings and IoT devices provides a wealth of data that Indoor GIS software can effectively leverage for enhanced operational efficiency and improved user experiences. Secondly, the burgeoning e-commerce sector and the consequent demand for optimized warehouse logistics and efficient supply chain management are significantly boosting market demand. Thirdly, the expansion of applications into sectors like healthcare, retail, and security is further diversifying market opportunities. Cloud-based solutions are witnessing higher adoption due to their scalability, cost-effectiveness, and ease of deployment compared to on-premise solutions. However, concerns regarding data security and privacy, as well as the relatively high initial investment costs for implementing Indoor GIS systems, pose challenges to market growth. Segmentation reveals strong demand across various applications. Warehouse logistics and asset management currently dominate the market share due to the clear ROI benefits of improved inventory management and asset tracking. The military and security sectors also present lucrative growth opportunities, driven by the need for sophisticated indoor navigation and situational awareness. Geographically, North America and Europe currently hold the largest market shares, attributed to the high concentration of technologically advanced businesses and early adoption of Indoor GIS technologies. However, Asia-Pacific is expected to show significant growth in the coming years, propelled by rapid urbanization and expanding industrial sectors in countries like China and India. Companies like Mapedin, Esri, and others are key players driving innovation and shaping the competitive landscape. The ongoing development of advanced features such as real-time location tracking, augmented reality integration, and improved data analytics capabilities will further fuel market growth in the coming years.

  9. Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from North Carolina Geological Survey unpublished digital data and maps by Coffey and Nickerson (2008) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-24000-scale-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cape Lookout, North Carolina
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  10. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.

  11. Geographic Information System Market - GIS - Growth, Size & Share

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence, Geographic Information System Market - GIS - Growth, Size & Share [Dataset]. https://www.mordorintelligence.com/industry-reports/geographic-information-system-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    GIS Market is Segmented by Component (Hardware and Software), by Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), by End User (Agriculture, Utilities, and Mining, Among Others), and by Geography (North America, Europe, Asia Pacific, and Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.

  12. Geographic Information System (GIS) In Telecom Sector Market Analysis APAC,...

    • technavio.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System (GIS) In Telecom Sector Market Analysis APAC, North America, Europe, South America, Middle East and Africa - China, US, UK, Canada, Italy - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United Kingdom, United States, Global
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2024-2028

    The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.

    Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
    However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
    

    What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
    Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
    

    How is this GIS In Telecom Sector Industry segmented and which is the largest segment?

    The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      APAC
    
        China
    
    
      North America
    
        Canada
        US
    
    
      Europe
    
        UK
        Italy
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
    GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
    

    Get a glance at the market report of share of variou

  13. PLACES: Place Data (GIS Friendly Format), 2023 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Place Data (GIS Friendly Format), 2023 release [Dataset]. https://catalog.data.gov/dataset/places-place-data-gis-friendly-format-2023-release
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 36 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  14. G

    Geographic Information System (GIS) Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Geographic Information System (GIS) Services Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-system-gis-services-55148
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.

  15. P

    Professional Map Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Professional Map Services Report [Dataset]. https://www.archivemarketresearch.com/reports/professional-map-services-55520
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The professional map services market is experiencing robust growth, projected to reach $625.6 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 7.0% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services across diverse sectors like utilities, construction, transportation, and government is a primary driver. Advanced mapping technologies, including AI-powered mapping and real-time data integration, are enhancing the accuracy and functionality of map services, leading to increased demand. Furthermore, the growing need for precise mapping data for infrastructure planning, urban development, and disaster management is significantly contributing to market growth. The market segmentation reveals a strong reliance on consulting and advisory services, alongside significant demand for deployment and integration, and ongoing support and maintenance. Competition is fierce, with established players like Google, TomTom, and Esri vying for market share alongside emerging innovative companies specializing in niche applications. Geographic expansion is also a key aspect, with North America and Europe currently holding significant market share, but Asia-Pacific exhibiting rapid growth potential driven by infrastructure development and increasing technological adoption. The market's future trajectory appears bright, anticipating continued growth driven by technological advancements and expanding application areas. The integration of Internet of Things (IoT) data into mapping solutions presents a substantial opportunity for market expansion. The increasing reliance on autonomous vehicles and drone technology will further fuel demand for highly accurate and detailed mapping data. However, challenges remain, including data security concerns and the need for robust data management infrastructure. The competitive landscape necessitates continuous innovation and strategic partnerships to secure market share and capitalize on emerging opportunities. The ongoing development of standardized mapping data formats and protocols will play a crucial role in facilitating market growth and interoperability.

  16. a

    Massachusetts 2023 Aerial Imagery (Tile Service)

    • hub.arcgis.com
    • gis.data.mass.gov
    • +2more
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). Massachusetts 2023 Aerial Imagery (Tile Service) [Dataset]. https://hub.arcgis.com/maps/massgis::massachusetts-2023-aerial-imagery-tile-service
    Explore at:
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Spring 2023 "true color" aerial imagery for Massachusetts, published as a tile layer at ArcGIS Online by MassGIS.This layer is based on 8-bit, 15 cm resolution JPEG 2000 versions of GeoTiff imagery, using the Red-Green-Blue bands.Funding for this imagery was provided by MassDOT, the State 911 Department, and the Executive Office of Technology Services and Security (EOTSS).This digital orthoimagery was created to provide easily accessible geospatial data which are readily available to enhance the capability of federal, state, and local emergency responders, as well as to plan for homeland security efforts. These data also support The National Map.These images can serve a variety of purposes, from general planning to field reference for spatial analysis, to a tool for data development and revision of vector maps. The imagery can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software and web-based maps.More details...

  17. n

    MapSAR Template Feature Layer

    • prep-response-portal.napsgfoundation.org
    • data-napsg.opendata.arcgis.com
    • +3more
    Updated Oct 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2017). MapSAR Template Feature Layer [Dataset]. https://prep-response-portal.napsgfoundation.org/maps/f412081560ec4074ac16e2161f7d5def
    Explore at:
    Dataset updated
    Oct 21, 2017
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.

  18. Facility Mapping Solutions for COVID-19 Recovery

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Jun 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Facility Mapping Solutions for COVID-19 Recovery [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/documents/c0652eb993a14f0fa375211a3a5f2d78
    Explore at:
    Dataset updated
    Jun 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    With the White House release of guidelines for states to reopen and employees to gradually return to work, facilities are tasked with complex challenges. Managers must make decisions to ensure a safe work environment and adhere to social distancing requirements. Office layouts must be restructured for adequate spacing between workspaces and to allow for routing that minimizes close-proximity encounters. Clear communication with staff will also be a key factor: Which areas should be avoided? When has an area last be cleaned?The ArcGIS Indoors system from Esri can help answer these geospatially focused questions for reopening the workplace. With indoor maps and an indoor positioning system, managers can create a floor-plan level awareness of the workplace, one that will allow for safe reopening._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  19. W

    Tennessee Department of Environment and Conservation Interactive Mapping...

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    • +1more
    html
    Updated Aug 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Tennessee Department of Environment and Conservation Interactive Mapping Portal [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/tennessee-department-of-environment-and-conservation-interactive-mapping-portal
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 8, 2019
    Dataset provided by
    Energy Data Exchange
    Area covered
    Tennessee
    Description

    TDEC is continuously striving to create better business practices through GIS and one way that we have found to provide information and answer some question is utilizing an interactive map. An interactive map is a display of geospatial data that allows you to manipulate and query the contents to get the information needed using a set of provided tools. Interactive maps are created using GIS software, and then distributed to users, usually over a computer network. The TDEC Land and Water interactive map will allow you to do simple tasks such as pan, zoom, measure and find a lat/long, while also giving you the capability of running simple queries to locate land and waters by name, entity, and number. With the ability to turn off and on back ground images such as aerial imagery (both black and white as well as color), we hope that you can find much utility in the tools provided.

  20. United States Geographic Information System (GIS) Market Report by Component...

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Mar 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2021). United States Geographic Information System (GIS) Market Report by Component (Hardware, Software, Services), Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), Device (Desktop, Mobile), End Use Industry (Agriculture, Utilities, Mining, Construction, Transportation, Oil and Gas, and Others), and Region 2025-2033 [Dataset]. https://www.imarcgroup.com/united-states-geographic-information-system-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Mar 12, 2021
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Global, United States
    Description

    The United States geographic information system (GIS) market size reached USD 4.3 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 10.1 Billion by 2033, exhibiting a growth rate (CAGR) of 9.9% during 2025-2033.

    Report Attribute
    Key Statistics
    Base Year
    2024
    Forecast Years
    2025-2033
    Historical Years
    2019-2024
    Market Size in 2024
    USD 4.3 Billion
    Market Forecast in 2033
    USD 10.1 Billion
    Market Growth Rate (2025-2033)9.9%

    IMARC Group provides an analysis of the key trends in each segment of the United States geographic information system (GIS) market report, along with forecasts at the regional and country level from 2025-2033. Our report has categorized the market based on component, function, device and end use industry.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
Organization logo

Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964)

Explore at:
Dataset updated
Jun 5, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
New York
Description

The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu