This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Continuing the tradition of the best-selling Getting to Know series, Getting to Know ArcGIS Pro 2.6 teaches new and existing GIS users how to get started solving problems using ArcGIS Pro. Using ArcGIS Pro for these tasks allows you to understand complex data with the leading GIS software that many businesses and organizations use every day.Getting to Know ArcGIS Pro 2.6 introduces the basic tools and capabilities of ArcGIS Pro through practical project workflows that demonstrate best practices for productivity. Explore spatial relationships, building a geodatabase, 3D GIS, project presentation, and more. Learn how to navigate ArcGIS Pro and ArcGIS Online by visualizing, querying, creating, editing, analyzing, and presenting geospatial data in both 2D and 3D environments. Using figures to show each step, Getting to Know ArcGIS Pro 2.6 demystifies complicated process like developing a geoprocessing model, using Python to write a script tool, and the creation of space-time cubes. Cartographic techniques for both web and physical maps are included.Each chapter begins with a prompt using a real-world scenario in a different industry to help you explore how ArcGIS Pro can be applied for operational efficiency, analysis, and problem solving. A summary and glossary terms at the end of every chapter help reinforce the lessons and skills learned.Ideal for students, self-learners, and seasoned professionals looking to learn a new GIS product, Getting to Know ArcGIS Pro 2.6 is a broad textbook and desk reference designed to leave users feeling confident in using ArcGIS Pro on their own.AUDIENCEProfessional and scholarly. Higher education.AUTHOR BIOMichael Law is a cartographer and GIS professional with more than a decade of experience. He was a cartographer for Esri, where he developed cartography for books, edited and tested GIS workbooks, and was the editor of the Esri Map Book. He continues to work with GIS software, writing technical documentation, teaching training courses, and designing and optimizing user interfaces.Amy Collins is a writer and editor who has worked with GIS for over 16 years. She was a technical editor for Esri, where she honed her GIS skills and cultivated an interest in designing effective instructional materials. She continues to develop books on GIS education, among other projects.Pub Date: Print: 10/6/2020 Digital: 8/18/2020 ISBN: Print: 9781589486355 Digital: 9781589486362 Price: Print: $84.99 USD Digital: $84.99 USD Pages: 420 Trim: 7.5 x 9.25 in.Table of ContentsPrefaceChapter 1 Introducing GISExercise 1a: Explore ArcGIS OnlineChapter 2 A first look at ArcGIS Pro Exercise 2a: Learn some basics Exercise 2b: Go beyond the basics Exercise 2c: Experience 3D GISChapter 3 Exploring geospatial relationshipsExercise 3a: Extract part of a dataset Exercise 3b: Incorporate tabular data Exercise 3c: Calculate data statistics Exercise 3d: Connect spatial datasetsChapter 4 Creating and editing spatial data Exercise 4a: Build a geodatabase Exercise 4b: Create features Exercise 4c: Modify featuresChapter 5 Facilitating workflows Exercise 5a: Manage a repeatable workflow using tasks Exercise 5b: Create a geoprocessing model Exercise 5c: Run a Python command and script toolChapter 6 Collaborative mapping Exercise 6a: Prepare a database for data collection Exercise 6b: Prepare a map for data collection Exercise 6c: Collect data using ArcGIS CollectorChapter 7 Geoenabling your projectExercise 7a: Prepare project data Exercise 7b: Geocode location data Exercise 7c: Use geoprocessing tools to analyze vector dataChapter 8 Analyzing spatial and temporal patternsExercise 8a: Create a kernel density map Exercise 8b: Perform a hot spot analysis Exercise 8c: Explore the results in 3D Exercise 8d: Animate the dataChapter 9 Determining suitability Exercise 9a: Prepare project data Exercise 9b: Derive new surfaces Exercise 9c: Create a weighted suitability modelChapter 10 Presenting your project Exercise 10a: Apply detailed symbology Exercise 10b: Label features Exercise 10c: Create a page layout Exercise 10d: Share your projectAppendix Image and data source credits Data license agreement GlossaryGetting to Know ArcGIS Pro 2.6 | Official Trailer | 2020-08-10 | 00:57
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.
In this tutorial, you will be introduced to the basics of the ArcGIS Online Web-based Geographic Information System (GIS) software tool. You will begin by exploring spatial data in the form of map layers that are available on the Web as well as map applications (apps). You will then use the ArcGIS Online Map Viewer to search for content, add features to a map, and save and share your completed map with others.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.
One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.
Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.
The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.
In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.
The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.
The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.
Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.
The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) software market is experiencing robust growth, driven by increasing demand for location intelligence across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The surge in adoption of cloud-based GIS solutions offers scalability and cost-effectiveness, attracting both individual users and large enterprises. Furthermore, advancements in technologies like AI and machine learning are enhancing the analytical capabilities of GIS software, leading to improved decision-making in areas such as urban planning, resource management, and disaster response. The increasing availability of geospatial data and the growing need for precise location-based services further contribute to market growth. Segmentation reveals a significant portion of the market is driven by enterprise applications, leveraging GIS for complex analysis and operational efficiency. While the on-premise segment remains relevant, the cloud-based segment is experiencing faster growth, reflecting the shift towards flexible and accessible solutions. Competitive rivalry among established players like Esri, Google, and Pitney Bowes, alongside innovative startups, fuels continuous product development and market innovation. Geographic variations in market penetration are notable. North America and Europe currently dominate the market, but the Asia-Pacific region is demonstrating rapid growth, fueled by substantial infrastructure development and increasing government investments in digital mapping initiatives. However, challenges remain. High initial investment costs for sophisticated GIS software can be a barrier for smaller businesses. Additionally, data security and privacy concerns, particularly concerning sensitive geospatial data, need careful management. Future growth will depend on addressing these constraints, promoting wider adoption among smaller enterprises and individuals, and fostering a robust ecosystem for data sharing and collaboration. The market's future is bright, propelled by technological advancements and an ever-increasing reliance on location-based insights across various industries.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market's value is estimated at $5 billion in 2025, demonstrating significant expansion from its historical period (2019-2024). A Compound Annual Growth Rate (CAGR) of 15% is projected from 2025 to 2033, indicating a substantial market expansion to an estimated $15 billion by 2033. Key drivers include the rising need for location intelligence in business decision-making, the increasing availability of geospatial data, and advancements in cloud computing and artificial intelligence (AI) that enhance spatial analysis capabilities. Furthermore, the integration of spatial analysis with other technologies, such as big data analytics and machine learning, is fostering innovation and expanding applications across various industries. The market is segmented by application (e.g., urban planning, environmental monitoring, transportation logistics) and by software type (e.g., GIS software, remote sensing software, spatial statistics software). Leading companies are continuously investing in research and development, leading to the emergence of more sophisticated and user-friendly solutions. Market restraints include the high cost of software licenses and implementation, the complexity of using advanced spatial analysis tools, and the shortage of skilled professionals capable of effectively leveraging these technologies. However, the expanding availability of open-source spatial analysis tools and online training programs is gradually mitigating these barriers. The regional breakdown shows strong growth across North America and Europe, fueled by significant technological advancements and substantial public and private sector investments. The Asia-Pacific region is also poised for significant expansion, driven by rapid urbanization and economic growth. The consistent growth across different segments and regions ensures long-term market stability and offers significant opportunities for both established players and new entrants. The continued convergence of spatial analysis with other technologies will remain a central theme, driving innovation and unlocking further value across numerous sectors.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This Tutorial consists of four tutorials that deal with integrating the statistical programming language R with ArcGIS for Desktop. Several concepts are covered which include configuring ArcGIS with R, writing basic R scripts, writing R scripts that work with ArcGIS data, and constructing R Tools for use within ArcGIS Pro. It is recommended that the tutorials are completed in sequential order. Each of the four tutorials (as well as a version of this document), can viewed directly from your Web browser by following the links below. However, you must obtain a complete copy of the tutorial files by downloading the latest release (or by cloning the tutorial repository on GitHub) if you wish to follow the tutorials interactively using ArcGIS and R software, along with pre-configured sample data.To download the tutorial documents and datasets, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/r-arcgis-tutorials.gitSoftware & Solutions Used: ArcGIS Pro 3.4 Internet browser (e.g., Mozilla Firefox, Google Chrome, Safari) R Statistical Computing Language – version 4.3.3 R-ArcGIS Bindings – version 1.0.1.311RStudio Desktop – version 2024.09.0+375Time to Complete: 2.5 h (excludes installation time)File Size: 115 MBDate Created: November 2017Last Updated: December 2024
I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The 3D GIS Platform market is experiencing robust growth, driven by increasing demand for spatially accurate data visualization and analysis across diverse sectors. The integration of 3D GIS into smart city initiatives, particularly in smart campuses, emergency command centers, and smart security systems, is a key factor propelling market expansion. Furthermore, the rising adoption of cloud-based 3D GIS solutions is enhancing accessibility and scalability, lowering barriers to entry for organizations of all sizes. While the precise market size for 2025 is unavailable, based on industry reports indicating substantial growth in adjacent geospatial technologies and a projected Compound Annual Growth Rate (CAGR), a reasonable estimate for the 2025 market size would be $2.5 billion. This figure reflects a healthy growth trajectory, considering the expanding applications of 3D GIS in various sectors. The market's segmentation reveals a strong presence of established players like Esri and Supermap alongside emerging regional technology providers, creating a competitive but dynamic market landscape. The North American and Asia-Pacific regions are expected to dominate the market due to substantial investments in infrastructure development and technological advancements. However, increasing regulatory complexities and the high initial investment costs for implementing 3D GIS solutions could pose challenges for market expansion in certain regions. Continued technological advancements, such as the integration of artificial intelligence (AI) and machine learning (ML) capabilities into 3D GIS platforms, are expected to further drive market growth. The development of more user-friendly interfaces and readily available training resources will also contribute to wider adoption across various user groups. Factors such as the rising adoption of Internet of Things (IoT) devices and the need for improved urban planning will further contribute to sustained market expansion. Competition is likely to intensify with both existing players expanding their product offerings and new entrants emerging in the market. Therefore, continuous innovation, strategic partnerships, and a focus on providing customized solutions will be crucial for success in this rapidly evolving landscape. Over the forecast period (2025-2033), the market is projected to maintain a healthy CAGR, leading to substantial market expansion.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Geographic Information System (GIS) Tools market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Firstly, the increasing adoption of cloud-based GIS solutions offers scalability, cost-effectiveness, and improved accessibility for businesses of all sizes, particularly SMEs seeking efficient resource management. Secondly, the rising demand for precise location-based data analysis across diverse sectors like urban planning, environmental monitoring, and precision agriculture fuels market growth. Furthermore, technological advancements, including the integration of AI and machine learning capabilities within GIS platforms, enhance analytical power and facilitate more sophisticated spatial decision-making. Finally, government initiatives promoting smart cities and digital transformation worldwide further stimulate market expansion. The market is segmented by application (SMEs, Large Enterprises) and type (Cloud-Based, On-Premises), reflecting the diverse needs of various user groups. Large enterprises, with their extensive spatial data requirements and resources, are expected to drive significant market share, while cloud-based solutions are poised for faster growth due to their flexible deployment models. The regional landscape reveals a dynamic distribution of market share. North America, particularly the United States, holds a prominent position, driven by high technological adoption rates and the presence of major GIS solution providers. Europe follows closely, fueled by increasing government investments in infrastructure development and digitalization initiatives. The Asia-Pacific region is expected to experience significant growth, propelled by rapid urbanization and the expanding adoption of GIS technologies in developing economies like China and India. While the on-premises segment currently dominates, the cloud-based segment is anticipated to exhibit higher growth in the forecast period, driven by its inherent advantages in scalability, accessibility, and cost-efficiency. Competitive dynamics are shaped by both established players like IBM TRIRIGA and emerging technology companies, leading to innovation and diversification of GIS tool offerings. The market's future hinges on continuous technological innovation, the growing adoption of location intelligence across sectors, and the expansion of robust infrastructure supporting data accessibility and management.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global market for GIS Collectors is experiencing robust growth, driven by increasing adoption of location-based services, the expanding need for precise geospatial data across various industries, and the rising availability of affordable and advanced mobile GIS technologies. Our analysis projects a market size of $2.5 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This growth is fueled by several key factors. The construction industry's reliance on precise mapping and asset tracking for project management is a major driver. Furthermore, the utility sector is increasingly leveraging GIS collectors for efficient network management and maintenance. Growing government initiatives promoting smart city development and infrastructure modernization are also significantly contributing to market expansion. Finally, the ongoing development of user-friendly interfaces and cloud-based solutions is simplifying data collection and analysis, making GIS technology accessible to a broader range of users. Despite the positive outlook, the market faces certain challenges. High initial investment costs associated with implementing GIS solutions can be a barrier for smaller organizations. Furthermore, the complexity of data integration and the need for skilled personnel can hinder broader adoption. However, these challenges are being mitigated by the emergence of affordable and user-friendly software solutions and increased availability of training and support resources. The market segmentation reveals a strong presence of established players like Hexagon, Trimble Geospatial, ESRI, Topcon, and Handheld, along with regional players like Wuhan South. Competitive dynamics are characterized by ongoing innovation in hardware and software, resulting in continuous improvements in data accuracy, collection efficiency, and user experience. The market is poised for sustained growth, driven by technological advancements and increasing demand for location intelligence across multiple sectors.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.
The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.
Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.
The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.
Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.
The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.
The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.
The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o
An ArcMap map package is a portable file that contains a map document (.mxd) as well as the data referenced by the map layers. (ArcGIS Pro map packages are similar but have different file extensions.) Even if you're not an ArcMap user, you may need at some point to bring a map document or map package into ArcGIS Pro. You don't need ArcMap software to do this tutorial.Estimated time: 20 minutesSoftware requirements: ArcGIS Pro
ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.