56 datasets found
  1. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, United Kingdom, Germany, United States, Canada, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  2. GIS In Telecom Sector Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS In Telecom Sector Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    North America, United Kingdom, United States, Canada, Global
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2025-2029

    The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
    Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
    

    What will be the Size of the GIS In Telecom Sector Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
    IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
    

    How is this GIS In Telecom Sector Industry segmented?

    The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Application
    
      Mapping
      Telematics and navigation
      Surveying
      Location based services
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.

    GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi

  3. Rail Network

    • data.wu.ac.at
    json, zip
    Updated Aug 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ordnance Survey (2018). Rail Network [Dataset]. https://data.wu.ac.at/schema/data_glasgow_gov_uk/ZDRiMjc0NjUtYjc2Yy00MTMxLWExZmYtMzFkMDM4YjhmZGQw
    Explore at:
    json(206046.0), json(18261.0), zip(7142.0), zip(23528.0)Available download formats
    Dataset updated
    Aug 10, 2018
    Dataset provided by
    Ordnance Surveyhttps://os.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Rail network in Glasgow showing the rail stations and rail lines. To view or use these files, a compression software and GIS software like ESRI ArcGIS or QGIS is needed.

    Data extracted 2013-01-10T13:48:15

    Contains Ordnance Survey data © Crown Copyright and Database right (2018).

  4. l

    Supplementary information files for article: 'The future scope of...

    • repository.lboro.ac.uk
    • figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diane Palmer; Ralph Gottschalg; Tom Betts (2023). Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis' [Dataset]. http://doi.org/10.17028/rd.lboro.7461722.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Loughborough University
    Authors
    Diane Palmer; Ralph Gottschalg; Tom Betts
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis'.Abstract:This paper uses site suitability analysis to identify locations for solar farms in the UK to help meet climate change targets. A set of maps, each representing a given suitability criterion, is created with geographical information systems (GIS) software. These are combined to give a Boolean map of areas which are appropriate for large-scale solar farm installation. Several scenarios are investigated by varying the criteria, which include geographical (land use) factors, solar energy resource and electrical distribution network constraints. Some are dictated by the physical and technical requirements of large-scale solar construction, and some by government or distribution network operator (DNO) policy. It is found that any suitability map which does not heed planning permission and grid constraints will overstate potential solar farm area by up to 97%. This research finds sufficient suitable land to meet Future Energy Scenarios (UK National Grid outlines for the coming energy landscape).

  5. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Brazil, United Kingdom, South Korea, France, United States, United Arab Emirates, North America, Canada, Germany, Global
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
    By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
    

    What will be the Size of the GIS Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.

    The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.

    How is this GIS Industry segmented?

    The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.

    The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.

    Request Free Sample

    The Software segment was valued at USD 5.06 billion in 2019

  6. High resolution vector polylines of the Antarctic coastline

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). High resolution vector polylines of the Antarctic coastline [Dataset]. https://koordinates.com/layer/111081-high-resolution-vector-polylines-of-the-antarctic-coastline/
    Explore at:
    csv, geopackage / sqlite, geodatabase, pdf, mapinfo mif, mapinfo tab, dwg, shapefile, kmlAvailable download formats
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    British Antarctic Surveyhttps://www.bas.ac.uk/
    Area covered
    Antarctica,
    Description

    Coastline for Antarctica created from various mapping and remote sensing sources, consisting of the following coast types: ice coastline, rock coastline, grounding line, ice shelf and front, ice rumple, and rock against ice shelf. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. High resolution versions of ADD data are suitable for scales larger than 1:1,000,000. The largest suitable scale is changeable and dependent on the region.

    Major changes in v7.5 include updates to ice shelf fronts in the following regions: Seal Nunataks and Scar Inlet region, the Ronne-Filchner Ice Shelf, between the Brunt Ice Shelf and Riiser-Larsen Peninsula, the Shackleton and Conger ice shelves, and Crosson, Thwaites and Pine Island. Small areas of grounding line and ice coastlines were also updated in some of these regions as needed.

    Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.

    Further information and useful links

    Map projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.

    The currency of this dataset is May 2022 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.

    For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.

    A related medium resolution dataset is also published via Living Atlas, as well medium and high resolution polygon datasets.

    For background information on the ADD project, please see the British Antarctic Survey ADD project page.

    Lineage

    Dataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each line has attributes detailing the source which can give the user further indications of its suitability for specific uses. Attributes also give information including 'surface' (e.g. grounding line, ice coastline, ice shelf front) and revision date. Compiled from sources ranging in time from 1990s-2022 - individual lines contain exact source dates.

  7. Unpublished Digital Surficial Geologic-GIS Map of Gateway National...

    • s.cnmilf.com
    • datadiscoverystudio.org
    • +3more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York (NPS, GRD, GRI, GATE, GWSF digital map) adapted from a New Jersey Geological Survey Digital Geodata Series map by Pristas, R. P. (2007) and a New York State Museum Map and Chart Series map by Cadwell, D.H., Connally, G.G., Dineen, R.J., Fleisher, P.J., Fuller, M.L., Sirkin, L., and Wiles, G.C. (1999) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/unpublished-digital-surficial-geologic-gis-map-of-gateway-national-recreation-area-and-vic
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New Jersey, New York
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gwsf_geology.gdb), a 10.1 ArcMap (.MXD) map document (gwsf_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gwsf_gis_readme.pdf). Please read the gwsf_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and New York State Museum. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gwsf_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gwsf_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  8. f

    GIS Research UK (GISRUK) 2015 Proceedings

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Malleson; Nicholas Addis; Helen Durham; Alison Heppenstall; Robin Lovelace; Paul Norman; Rachel Oldroyd (2023). GIS Research UK (GISRUK) 2015 Proceedings [Dataset]. http://doi.org/10.6084/m9.figshare.1491375.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Nick Malleson; Nicholas Addis; Helen Durham; Alison Heppenstall; Robin Lovelace; Paul Norman; Rachel Oldroyd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    This volume contains the papers presented at GIS Research UK 2015 (GISRUK2015) held at the School of Geography, University of Leeds, on 15-17 April 2015.

  9. W

    GeoStrat Jurassic Report (ArcGIS Version)

    • cloud.csiss.gmu.edu
    • data.europa.eu
    • +1more
    html
    Updated Dec 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oil and Gas Authority (2019). GeoStrat Jurassic Report (ArcGIS Version) [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/geostrat-jurassic-report-arcgis-version1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 19, 2019
    Dataset provided by
    Oil and Gas Authority
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben

    This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.

    The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.

    The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms).

    In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA.

    A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages.

    All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  10. a

    Medium resolution vector polygons of the Antarctic coastline

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). Medium resolution vector polygons of the Antarctic coastline [Dataset]. https://hub.arcgis.com/maps/BAS::medium-resolution-vector-polygons-of-the-antarctic-coastline-1/about
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset authored and provided by
    British Antarctic Survey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Antarctica,
    Description

    AbstractCoastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’ attribute. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. This dataset has been generalised from the high resolution vector polygons. Medium resolution versions of ADD data are suitable for scales smaller than 1:1,000,000, although certain regions will appear more detailed than others due to variable data availability and coastline characteristics.Changes in v7.10 include updates to the coastline of Alexander Island and surrounding islands, and the ice shelf fronts of the Wilkins and Brunt ice shelves.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.The currency of this dataset is November 2024 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.A related high resolution dataset is also published via Living Atlas, as well medium and high resolution line datasets.For background information on the ADD project, please see the British Antarctic Survey ADD project page.LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each polygon contains a ‘surface’ attribute with either ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’. Details of when and how each line was created can be found in the attributes of the high or medium resolution polyline coastline dataset. Data sources range in time from 1990s-2024 - individual lines contain exact source dates. This medium resolution version has been generalised from the high resolution version. All polygons <0.1km² not intersecting anything else were deleted and the ‘simplify’ tool was used in ArcGIS with the ‘retain critical points’ algorithm and a smoothing tolerance of 50 m.CitationGerrish, L., Ireland, L., Fretwell, P., & Cooper, P. (2024). Medium resolution vector polygons of the Antarctic coastline (Version 7.10) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/93ac35af-9ec7-4594-9aaa-0760a2b289d5If using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, 2024'

  11. D

    Drone Surveying Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Drone Surveying Software Report [Dataset]. https://www.marketreportanalytics.com/reports/drone-surveying-software-76814
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The drone surveying software market is experiencing robust growth, driven by increasing adoption across diverse sectors like agriculture, municipal affairs, mining, and construction. The market's expansion is fueled by several key factors: the rising need for efficient and accurate data acquisition, advancements in drone technology offering higher resolution imagery and improved data processing capabilities, and the decreasing cost of drone hardware and software. Furthermore, the integration of AI and machine learning in drone surveying software is enhancing data analysis speed and accuracy, leading to quicker project completion times and cost savings. The cloud-based segment is witnessing significant traction due to its scalability, accessibility, and collaborative features. While the on-premise segment retains a considerable market share, the cloud-based offering is projected to surpass it in the coming years, driven by the increasing preference for remote data access and reduced infrastructure costs. Competition is fierce, with established players like Autodesk and Esri UK alongside specialized drone surveying software companies like DroneDeploy and Pix4D vying for market share. Geographic expansion, particularly in developing economies experiencing rapid infrastructure development, presents significant opportunities for market growth. However, challenges remain, including regulatory hurdles surrounding drone usage, data security concerns, and the need for skilled professionals capable of operating and interpreting drone surveying data. Looking ahead, the market's trajectory suggests sustained growth over the next decade, propelled by technological innovations and widening applications. The continued refinement of AI-powered analytics within drone surveying software will significantly reduce manual processing, allowing for quicker turnaround times and cost efficiency. The integration of 3D modeling capabilities and advanced data visualization tools are key advancements pushing market adoption. Regional variations in growth will depend on the pace of technological adoption and the regulatory environment in each region. North America and Europe are currently leading the market, but the Asia-Pacific region is projected to witness significant growth in the coming years due to the expansion of infrastructure projects and increasing adoption of advanced technologies. The overall market is poised for a period of sustained growth, driven by increasing demand and ongoing technological improvements.

  12. Land Management Software Market By Product Type (GIS, Web-Based,...

    • verifiedmarketresearch.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Land Management Software Market By Product Type (GIS, Web-Based, On-Premise), Application (Oil & Gas, Lease Management, Urban Planning), & Region for 2024 to 2031. [Dataset]. https://www.verifiedmarketresearch.com/product/land-management-software-market/
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Land Management Software Market size was valued at USD 1.69 Billion in 2024 and is projected to reach USD 2.62 Billion by 2031, growing at a CAGR of 5.65% from 2024 to 2031.

    The growth of land management software is primarily driven by the increasing demand for efficient land use, advancements in geospatial technology, regulatory compliance, and the need for data-driven decision-making. As global populations grow and urbanization accelerates, there is a growing need for efficient land resource management. Land management software offers tools to optimize land use, enhance productivity in agriculture, forestry, and urban planning, and ensure sustainable development practices.

    Advancements in geospatial technology, such as Geographic Information Systems (GIS), remote sensing, and satellite imagery, have significantly enhanced the capabilities of land management software, enabling more accurate mapping, monitoring, and analysis of land resources. Regulatory compliance and environmental concerns also drive the adoption of land management software among government agencies, landowners, and businesses.

    Data-driven decision-making is another driving factor, as land management software provides powerful analytical tools for processing large volumes of spatial data, generating insights, and supporting data-driven decision-making processes. The growing awareness of climate change risks and the need for resilient land management practices drives the adoption of software solutions that enable climate-smart land management.

    Precision agriculture practices are increasingly emphasized in the agricultural sector, with land management software playing a critical role in supporting these practices. The emergence of integrated land management platforms that combine GIS, asset management, and workflow automation capabilities is also driving the adoption of comprehensive software solutions.

    In conclusion, the growth of land management software is driven by the need for efficient land use, advancements in technology, regulatory requirements, and the recognition of the importance of sustainable land management practices in addressing global challenges such as food security, environmental degradation, and climate change.

  13. e

    Visual Boundaries for the National Trip End Model (NTEM)

    • data.europa.eu
    • data.wu.ac.at
    zip
    Updated Mar 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2017). Visual Boundaries for the National Trip End Model (NTEM) [Dataset]. https://data.europa.eu/data/datasets/visual-boundaries-for-the-national-trip-end-model-ntem?locale=en
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 2, 2017
    Dataset authored and provided by
    Department for Transport
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    GIS files for the zoning system used in the National Trip End Model (NTEM).

    Shapefiles for the zoning system used in the National Trip End Model (NTEM).

    The files are provided in MapInfo and Shapefile format to allow viewing of the NTEM zoning system with GIS software. The smallest geographical zones of the model are based on the census Middle Super Output Area (MSOA).

  14. GeoStrat Jurassic Report (open source version)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Sea Transition Authority (2025). GeoStrat Jurassic Report (open source version) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/documents/82ece06fa225451c8da89b6fbe157a5d
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    North Sea Transition Authority
    Area covered
    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben

    This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.

    The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.

    The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format for import into different interpretation platforms.

    In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in shapefile format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations who are using non-ESRI ArcGIS GIS software. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA.

    An ESRI ArcGIS version of this delivery, including geodatabases, layer files and map documents for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website and is recommended for use with ArcGIS. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  15. f

    Data from: Object-Based Image Analysis for Detection of Japanese Knotweed...

    • figshare.com
    pdf
    Updated Dec 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Jones; Stephen Pike; Malcolm Thomas; Denis Murphy (2016). Object-Based Image Analysis for Detection of Japanese Knotweed s.l. taxa (Polygonaceae) in Wales (UK) [Dataset]. http://doi.org/10.6084/m9.figshare.4483463.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Dec 20, 2016
    Dataset provided by
    figshare
    Authors
    Daniel Jones; Stephen Pike; Malcolm Thomas; Denis Murphy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wales, United Kingdom
    Description

    Japanese Knotweed s.l. taxa are amongst the most aggressive vascular plant Invasive Alien Species (IAS) in the world. These taxa form dense, suppressive monocultures and are persistent, pervasive invaders throughout the more economically developed countries (MEDCs) of the world. The current paper utilises the Object-Based Image Analysis (OBIA) approach of Definiens Imaging Developer software, in combination with very high spatial resolution (VHSR) colour infra-red (CIR) and visible-band (RGB) aerial photography in order to detect Japanese Knotweed s.l. taxa in Wales (UK). An algorithm was created using Definiens in order to detect these taxa, using variables found to effectively distinguish them from landscape and vegetation features. The results of the detection algorithm were accurate, as confirmed by field validation and desk-based studies. Further, these results may be incorporated into Geographical Information Systems (GIS) research as they are readily transferable as vector polygons (shapefiles). The successful detection results developed within the Definiens software should enable greater management and control efficacy. Further to this, the basic principles of the detection process could enable detection of these taxa worldwide, given the (relatively) limited technical requirements necessary to conduct further analyses.

  16. n

    LANDMAP: Satellite Image and and Elevation Maps of the United Kingdom

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). LANDMAP: Satellite Image and and Elevation Maps of the United Kingdom [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214611010-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    [From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]

     A joint project to provide orthorectified satellite image mosaics of Landsat,
     SPOT and ERS radar data and a high resolution Digital Elevation Model for the
     whole of the UK. These data will be in a form which can easily be merged with
     other data, such as road networks, so that any user can quickly produce a
     precise map of their area of interest.
    
     Predominately aimed at the UK academic and educational sectors these data and
     software are held online at the Manchester University super computer facility
     where users can either process the data remotely or download it to their local
     network.
    
     Please follow the links to the left for more information about the project or
     how to obtain data or access to the radar processing system at MIMAS. Please
     also refer to the MIMAS spatial-side website,
     "http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
    
  17. E

    High-resolution (2 metre) digital elevation models of difference showing...

    • catalogue.ceh.ac.uk
    • data-search.nerc.ac.uk
    text/directory
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Westoby (2023). High-resolution (2 metre) digital elevation models of difference showing surface change following the Chamoli ice-debris flow, India, February 2021 [Dataset]. http://doi.org/10.5285/f5394eaa-5ccb-4cf7-9ee4-c057c35b8517
    Explore at:
    text/directoryAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    M. Westoby
    Time period covered
    Feb 1, 2021 - Jan 1, 2022
    Area covered
    Dataset funded by
    Natural Environment Research Council
    Description

    These data are digital elevation models (DEMs) of difference (DoD). They are a geospatial dataset created in raster (.tif) format and quantify vertical (z) topographic change between two dates. The data were created to support analysis of landscape change following the 7th February 2021 avalanche-debris flow in Chamoli District, Uttarakhand, India. The data also supported numerical modelling using CAESAR-Lisflood (see related data https://catalogue.ceh.ac.uk/documents/7023cb77-c797-475e-872c-6f1e2b63dcc1). They are most commonly imported into GIS software, where they can be analysed or support other forms of geospatial analysis.

  18. Corinth Rift, Greece Fault Location and Activity Rate data (NERC Grant...

    • data-search.nerc.ac.uk
    • metadata.bgs.ac.uk
    • +1more
    html
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2023). Corinth Rift, Greece Fault Location and Activity Rate data (NERC Grant NE/R016550/1) [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/api/records/02a6ff69-37cc-42fb-e063-0937940ab682
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 22, 2023
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Time period covered
    Sep 7, 2017 - Aug 1, 2023
    Area covered
    Description

    The data are derived from interpretation of seismic reflection profiles within the offshore Corinth Rift, Greece (the Gulf of Corinth) integrated with IODP scientific ocean drilling borehole data from IODP Expedition 381 (McNeill et al., 2019a, 2019b). The data include rift fault coordinate (location, geometry) information and slip rate and extension rate information for the major faults. Seismic reflection data were published in Taylor et al. (2011) and in Nixon et al. (2016). Preliminary fault interpretations and rate data, prior to IODP drilling, were published in Nixon et al. (2016). Details of datasets: The data can be viewed in GIS software (ArcGIS, QGIS) or the Excel and .dbf files can be used for viewing of rate data and import of fault coordinates into other software. The 4 folders are for different time periods with shape files for the N-Dipping and S-Dipping Faults in the offshore Corinth Rift and respective slip and extension (horizontal) rates. The shapefiles are digitised fault traces for the basement offsetting faults, picked from the Multichannel Seismic Data collected by the R/V Maurice Ewing. Fault traces are segmented and each segment has an average throw (vertical) rate (Tavg) in mm/yr. The rates for the segments are averages based on measurements at the ends of each segment. The major fault trace segments also have slip-rates (slip_rate) and extension-rates (ext_rate or extension_) in mm/yr. All rates as well as the names for major faults can be located in the attribute table of the shape files along with X- and Y-coordinates. The coordinate system is WGS84 UTM Zone 34N. The shape files can be loaded into a GIS (ArcGIS, QGIS etc.) allowing mapping and visualization of the fault traces and their activity rates. In addition, the attribute tables are .dbf files found within each folder. These have also been provided as .xlsx (Excel) files which include the fault coordinate information, and slip rates and extension rates along the major faults. References McNeill, L.C., Shillington, D.J., Carter, G.D.O., and the Expedition 381 Participants, 2019a. Corinth Active Rift Development. Proceedings of the International Ocean Discovery Program, 381: College Station, TX (International Ocean Discovery Program). McNeill, L.C., Shillington, D.J., et al., 2019b, High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift, Scientific Reports, 9, 3116. Nixon, C.W., McNeill, L.C., Bull, J.M., Bell, R.E., Gawthorpe, R.L., Henstock, T.J., Christodoulou, D., Ford, M., Taylor, B., Sakellariou, S. et al., 2016. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35, 1225–1248. Taylor, B., J. R. Weiss, A. M. Goodliffe, M. Sachpazi, M. Laigle, and A. Hirn (2011), The structures, stratigraphy and evolution of the Gulf of Corinth Rift, Greece, Geophys. J. Int., 185(3), 1189–1219.

  19. G

    River Network

    • dtechtive.com
    • find.data.gov.scot
    zip
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Glasgow City Council (uSmart) (2025). River Network [Dataset]. https://dtechtive.com/datasets/39501
    Explore at:
    zip(0.0087 MB), zip(0.0188 MB)Available download formats
    Dataset updated
    May 26, 2025
    Dataset provided by
    Glasgow City Council (uSmart)
    Description

    River network in Glasgow showing the river and coast lines. To view or use these files, a compression software and GIS software like ESRI ArcGIS or QGIS is needed. Data extracted 2013-10-15T14:30:45 Contains Ordnance Survey data (c) Crown Copyright 2013. Licence: None

  20. 2022 UK EEZ sedimentary organic carbon vulnerability ranking estimates GIS...

    • dtechtive.com
    • find.data.gov.scot
    zip
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marine Scotland (2022). 2022 UK EEZ sedimentary organic carbon vulnerability ranking estimates GIS layers [Dataset]. https://dtechtive.com/datasets/20001
    Explore at:
    zip(37.4052 MB)Available download formats
    Dataset updated
    Jul 27, 2022
    Dataset provided by
    Marine Directoratehttps://www.gov.scot/about/how-government-is-run/directorates/marine-scotland/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    The mapping is based of secondary data sources for bottom fishing pressure (OSPAR), sediment type and organic carbon (OC) content (Smeaton et al 2021), and sediment lability as a function of grain size (Smeaton et al 2022). A new calculation methodology has been created to estimate the potential vulnerability of OC to bottom fishing induced disturbance as a function of sediment grain size and resettling speed. This allows for the potential OC lost through lateral transportation, consumption, or remineralisation as a result of bottom fishing disturbance to be estimated. By using fuzzy set theory, the potential vulnerability of sedimentary OC is estimated and mapped for the UK EEZ. All calculations and modelling were carried out within the ESRI ArcGIS software package using the spatial overlay, raster calculator and the zonal statistics tools. Full details of the study and methodology can be found in Black et al. (2022) and relevant supporting documents.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
Organization logo

Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America

Explore at:
Dataset updated
Jul 15, 2024
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
France, United Kingdom, Germany, United States, Canada, Global
Description

Snapshot img

Geographic Information System Analytics Market Size 2024-2028

The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.

What will be the Size of the GIS Analytics Market during the forecast period?

Request Free Sample

The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.

How is this Geographic Information System Analytics Industry segmented?

The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

End-user

  Retail and Real Estate
  Government
  Utilities
  Telecom
  Manufacturing and Automotive
  Agriculture
  Construction
  Mining
  Transportation
  Healthcare
  Defense and Intelligence
  Energy
  Education and Research
  BFSI


Components

  Software
  Services


Deployment Modes

  On-Premises
  Cloud-Based


Applications

  Urban and Regional Planning
  Disaster Management
  Environmental Monitoring Asset Management
  Surveying and Mapping
  Location-Based Services
  Geospatial Business Intelligence
  Natural Resource Management


Geography

  North America

    US
    Canada


  Europe

    France
    Germany
    UK


  APAC

    China
    India
    South Korea


  Middle East and Africa

    UAE


  South America

    Brazil


  Rest of World

By End-user Insights

The retail and real estate segment is estimated to witness significant growth during the forecast period.

The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

Search
Clear search
Close search
Google apps
Main menu