This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data provides a summary of the state of development practice for Geographic Information Systems (GIS) software (as of August 2017). The summary is based on grading a set of 30 GIS products using a template of 56 questions based on 13 software qualities. The products range in scope and purpose from a complete desktop GIS systems, to stand-alone tools, to programming libraries/packages.
The template used to grade the software is found in the TabularSummaries.zip file. Each quality is measured with a series of questions. For unambiguity the responses are quantified wherever possible (e.g.~yes/no answers). The goal is for measures that are visible, measurable and feasible in a short time with limited domain knowledge. Unlike a comprehensive software review, this template does not grade on functionality and features. Therefore, it is possible that a relatively featureless product can outscore a feature-rich product.
A virtual machine is used to provide an optimal testing environments for each software product. During the process of grading the 30 software products, it is much easier to create a new virtual machine to test the software on, rather than using the host operating system and file system.
The raw data obtained by measuring each software product is in SoftwareGrading-GIS.xlsx. Each line in this file corresponds to between 2 and 4 hours of measurement time by a software engineer. The results are summarized for each quality in the TabularSummaries.zip file, as a tex file and compiled pdf file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In general, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large rivers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.
The primary intent of this workshop is to provide practical training in using Statistics Canada geography files with the leading industry standard software: Environmental Systems Research Institute, Inc.(ESRI) ArcGIS 9x. Participants will be introduced to the key features of ArcGIS 9x, as well as to geographic concepts and principles essential to understanding and working with geographic information systems (GIS) software. The workshop will review a range of geography and attribute files available from Statistics Canada, as well as some best practices for accessing this information. A brief overview of complementary data sets available from federal and provincial agencies will be provided. There will also be an opportunity to complete a practical exercise using ArcGIS9x. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-221.)
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: A Lisson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8Resource type: lessonSubject topic(s): gis, geographic thinkingRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Geographic Information System (GIS) Market size was valued at USD 16.4 Billion in 2024 and is projected to reach USD 43.82 Billion by 2032, growing at a CAGR of 13.07% from 2026 to 2032.Key market drivers for the Geographic Information System (GIS) Market include rising demand for smart city infrastructure, increasing use of location-based services, growing applications in urban planning and disaster management, and advancements in satellite and remote sensing technologies that enhance geospatial data accuracy and real-time analysis.
This app has one page for each geography type, navigated using an "Other geographies" menu.For more information about the Community Health Profiles data initiative, please see the initiative homepage.
GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live includes:
Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literature review dataset
This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.
This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.
The reference to cite the related paper is the following:
Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y
To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a raster-based suitability map of landfill sites produced after the February 6, 2023, Türkiye earthquakes centred on Kahramanmaraş - Pazarcık and Kahramanmaraş - Elbistan. In this study, a site selection model was developed using open-source Geographic Information Systems (GIS) software and the Best-Worst Method (BWM), one of the Multi-Criteria Decision-Making Methods, to determine the most suitable landfill areas immediately after the earthquake.The suitability map of the landfill sites can be accessed through the Serverless Cloud-GIS based Disaster Management Portal at https://web.itu.edu.tr/metemu/nominal/deprem.htmlThe pairwise comparison matrix, weight calculation, and sensitivity analysis are also provided in the MS Excel file.
This proposal represents the need of using GIS as a tool to prepare inputs data of WRF-Hydro hydrologic model to simulate and predict streamflow in a small watershed in the GSL. WRF-Hydro, developed by National Center for Atmospheric Research ( NCAR), is the underlying hydrologic model implemented in National Water Model (NWM). The goal of this work is to use WRF-Hydro for a small watershed and compare the outputs with those of NWM.
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
How is this GIS In Telecom Sector Industry segmented?
The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.
GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi
The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dasymetric mapping is a technique used to improve the accuracy of population mapping. In the United States, census data is widely used to analyze the spatial distribution of socio-economic factors. For instance, the American Community Survey (ACS, available at https://www.census.gov/programs-surveys/acs) compiles crucial socio-economic data at the census tract level. While census boundaries cover entire states, the population is not evenly distributed but tends to concentrate in residential areas. Dasymetric mapping, in combination with other datasets like land use and land cover, enhances the precision of mapping results.This notebook applies two python packages including:Tobler, a geostatistic pytho package based on PySAL: https://github.com/pysal/tobler.The EnviroAtlas Intelligent Dasymetric Toolbox by the EPA: https://github.com/USEPA/Dasymetric-Toolbox-OpenSource/tree/masterFor more information about dasymetric mapping, see this publication by Baynes, Neale, and Hultgren (2022).Data used:Open Street Map's residential zonesU.S. 2020 Decennial Census at the census block levelNational Land Cover Dataset (NLCD) from 2019 (indexed in the Virginia Data Cube).Data was called and processed in the Virginia Data Cube: https://datacube.vmasc.org/Funding: This work was made possible by the NASA AIST-21-0031 program, grant number 80NSSC22K1407.Data Description for each layer:Open Street Map (OSM) Residential is a free layer provided by the Open Street Map community that are polygons. AIST_regionCensus are census block polygons from the 2020 deciennial US census clipped to the study region. AIST Census - Clipped to OSM are census block polygons that are clipped to the OSM residential area polygons. Tobler_MAI_totPop are hexagons representing total population through the MAI Tobler function. Tobler_MAI_medFrag are hexagons representing total number of medically fragile population through the MAI Tobler function. Tobler_AI_totPop are hexagons representing total population through the AI Tobler function. Tobler_AI_medFrag are hexagons representing total number of medically fragile population through the AI Tobler function. EPA_totPop are hexagons representing total population through the EPA's IDM open source tool without using an uninhabited mask. EPA_medFrag are hexagons representing total medically fragile population through the EPA's IDM open source tool without using an uninhabited mask. Please note the above data with EPA as a prefix does not represent EPA approved products. The EPA's EnviroAtlas has their own dasymetric output. You may find Jupyter Notebooks that show how to gather this data, powered by the Virginia Datacube, here: https://github.com/ODU-GeoSEA/va-datacube
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.
Geospatial Solutions Market: Definition/ Overview
Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.
Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.
Methods 1. Data collection using digital photographs and GIS
A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).
Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).
To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.
We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
GIS-datasets for the Street networks of Stockholm, Gothenburg and Eskilstuna produced as part of the Spatial Morphology Lab (SMoL).
The goal of the SMoL project is to develop a strong theory and methodology for urban planning & design research with an analytical approach. Three frequently recurring variables of spatial urban form are studied that together quite well capture and describe the central characteristics and qualities of the built environment: density, diversity and proximity.
The first measure describes how intensive a place can be used depending on how much built up area is found there. The second measure captures how differentiated the use of a place can be depending on the division in smaller units such as plots. The third measure describes how accessible a place is depending on how it relates with other places. Empirical studies have shown strong links between these metrics and people's use of cities such as pedestrian movement patterns.
To support this goal, a central objective of the project is the establishment of an international platform of GIS data models for comparative studies in spatial urban form comprising three European capitals: London in the UK, Amsterdam in the Netherlands and Stockholm in Sweden, as well as two additional Swedish cities of smaller size than Stockholm: Gothenburg and Eskilstuna.
The result of the project is a GIS database for the five cities covering the three basic layers of urban form: street network (motorised and non-motorised), buildings and plots systems.
The data is shared via SND to create a research infrastructure that is open to new study initiatives. The datasets for Amsterdam will also be uploaded to SND. The datasets of London cannot be uploaded because of licensing restrictions.
The street network GIS-maps include motorised and non-motorised networks. The motorised networks exclude all streets that are pedestrian-only and were cars are excluded. The network layers are based on the Swedish national road database, NVDB (Nationell Vägdatabas), downloaded from Trafikverket (https://lastkajen.trafikverket.se, date of download 15-5-2016, last update 8-11-2015). The original road-centre-line maps of all cities were edited based on the same basic representational principles and were converted into line-segment maps, using the following software: FME, Mapinfo professional and PST (Place Syntax Tool). The coordinate system is SWEREF99TM. In the final line-segment maps (GIS-layers) all roads are represented with one line irrespectively of the number of lanes, except from Motorways and Highways which are represented with two lines, one for each direction, again irrespectively of the number of lanes. We followed the same editing and generalizing procedure for all maps aiming to remove errors and to increase comparability between networks. This process included removing duplicate and isolated lines, snapping and generalizing. The snapping threshold used was 2m (end points closer than 2m were snapped together). The generalizing threshold used was 1m (successive line segments with angular deviation less than 1m were merged into one). In the final editing step, all road polylines were segmented to their constituting line-segments. The aim was to create appropriate line-segment maps to be analysed using Angular Segment Analysis, a network centrality analysis method introduced in Space Syntax.
All network layers are complemented with an “Unlink points” layer; a GIS point layer with the locations of all non-level intersections, such as overpasses and underpasses, bridges, tunnels, flyovers and the like. The Unlink point layer is necessary to conduct network analysis that takes into account the non-planarity of the street network, using such software as PST (Place Syntax Tool).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was prepared as input for the Selkie GIS-TE tool. This GIS tool aids site selection, logistics optimization and financial analysis of wave or tidal farms in the Irish and Welsh maritime areas. Read more here: https://www.selkie-project.eu/selkie-tools-gis-technoeconomic-model/
This research was funded by the Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate and the Marine and by the Sustainable Energy Authority of Ireland (SEAI). Support was also received from the European Union's European Regional Development Fund through the Ireland Wales Cooperation Programme as part of the Selkie project.
File Formats
Results are presented in three file formats:
tif Can be imported into a GIS software (such as ARC GIS) csv Human-readable text format, which can also be opened in Excel png Image files that can be viewed in standard desktop software and give a spatial view of results
Input Data
All calculations use open-source data from the Copernicus store and the open-source software Python. The Python xarray library is used to read the data.
Hourly Data from 2000 to 2019
Wind -
Copernicus ERA5 dataset
17 by 27.5 km grid
10m wind speed
Wave - Copernicus Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis dataset 3 by 5 km grid
Accessibility
The maximum limits for Hs and wind speed are applied when mapping the accessibility of a site.
The Accessibility layer shows the percentage of time the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5) are below these limits for the month.
Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined by checking if
the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total number of hours for the month.
Environmental data is from the Copernicus data store (https://cds.climate.copernicus.eu/). Wave hourly data is from the 'Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis' dataset.
Wind hourly data is from the ERA 5 dataset.
Availability
A device's availability to produce electricity depends on the device's reliability and the time to repair any failures. The repair time depends on weather
windows and other logistical factors (for example, the availability of repair vessels and personnel.). A 2013 study by O'Connor et al. determined the
relationship between the accessibility and availability of a wave energy device. The resulting graph (see Fig. 1 of their paper) shows the correlation between
accessibility at Hs of 2m and wind speed of 15.0m/s and availability. This graph is used to calculate the availability layer from the accessibility layer.
The input value, accessibility, measures how accessible a site is for installation or operation and maintenance activities. It is the percentage time the
environmental conditions, i.e. the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5), are below operational limits.
Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined
by checking if the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total
number of hours for the month. Once the accessibility was known, the percentage availability was calculated using the O'Connor et al. graph of the relationship
between the two. A mature technology reliability was assumed.
Weather Window
The weather window availability is the percentage of possible x-duration windows where weather conditions (Hs, wind speed) are below maximum limits for the
given duration for the month.
The resolution of the wave dataset (0.05° × 0.05°) is higher than that of the wind dataset
(0.25° x 0.25°), so the nearest wind value is used for each wave data point. The weather window layer is at the resolution of the wave layer.
The first step in calculating the weather window for a particular set of inputs (Hs, wind speed and duration) is to calculate the accessibility at each timestep.
The accessibility is based on a simple boolean evaluation: are the wave and wind conditions within the required limits at the given timestep?
Once the time series of accessibility is calculated, the next step is to look for periods of sustained favourable environmental conditions, i.e. the weather
windows. Here all possible operating periods with a duration matching the required weather-window value are assessed to see if the weather conditions remain
suitable for the entire period. The percentage availability of the weather window is calculated based on the percentage of x-duration windows with suitable
weather conditions for their entire duration.The weather window availability can be considered as the probability of having the required weather window available
at any given point in the month.
Extreme Wind and Wave
The Extreme wave layers show the highest significant wave height expected to occur during the given return period. The Extreme wind layers show the highest wind speed expected to occur during the given return period.
To predict extreme values, we use Extreme Value Analysis (EVA). EVA focuses on the extreme part of the data and seeks to determine a model to fit this reduced
portion accurately. EVA consists of three main stages. The first stage is the selection of extreme values from a time series. The next step is to fit a model
that best approximates the selected extremes by determining the shape parameters for a suitable probability distribution. The model then predicts extreme values
for the selected return period. All calculations use the python pyextremes library. Two methods are used - Block Maxima and Peaks over threshold.
The Block Maxima methods selects the annual maxima and fits a GEVD probability distribution.
The peaks_over_threshold method has two variable calculation parameters. The first is the percentile above which values must be to be selected as extreme (0.9 or 0.998). The
second input is the time difference between extreme values for them to be considered independent (3 days). A Generalised Pareto Distribution is fitted to the selected
extremes and used to calculate the extreme value for the selected return period.
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.