66 datasets found
  1. Open Source GIS Training for Improved Protected Area Planning and Management...

    • solomonislands-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://solomonislands-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
    Explore at:
    zip(702782472), pdf(3669473), pdf(969719), pdf(5434848)Available download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Solomon Islands, 168.10043334961 -4.0464671937446, 168.10043334961 -12.561265715616)), POLYGON ((155.35629272461 -12.561265715616, 155.35629272461 -4.0464671937446
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  2. Data from: Visual programming-based Geospatial Cyberinfrastructure for...

    • tandf.figshare.com
    docx
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao (2025). Visual programming-based Geospatial Cyberinfrastructure for open-source GIS education 3.0 [Dataset]. http://doi.org/10.6084/m9.figshare.28472871.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.

  3. a

    Crop Index Model

    • cecgis-caenergy.opendata.arcgis.com
    • data.cnra.ca.gov
    • +5more
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2023). Crop Index Model [Dataset]. https://cecgis-caenergy.opendata.arcgis.com/datasets/crop-index-model
    Explore at:
    Dataset updated
    Mar 14, 2023
    Dataset authored and provided by
    California Energy Commission
    License

    https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use

    Area covered
    Description

    Cropland Index The Cropland Index evaluates lands used to produce crops based on the following input datasets: Revised Storie Index, California Important Farmland data, Electrical Conductivity (EC), and Sodium Adsorption Ratio (SAR). Together, these input layers were used in a suitability model to generate this raster. High values are associated with better CroplandsCalifornia Important Farmland data – statistical data used for analyzing impacts on California’s agricultural resources from the Farmland Mapping and Monitoring Program. Agricultural land is rated according to soil quality and irrigation status. The maps are updated every two years (on even numbered years) with the use of a computer mapping system, aerial imagery, public review, and field reconnaissance. Cropland Index Mask - This is a constructed data set used to define the model domain. Its footprint is defined by combining the extent of the California Important Farmland data (2018) classifications listed above and the area defined by California Statewide Crop Mapping for the state of California.Prime Farmland – farmland with the best combination of physical and chemical features able to sustain long term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date.Farmland of Statewide Importance – farmland similar to Prime Farmland but with minor shortcomings, such as greater slopes or less ability to store soil moisture. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date. Unique Farmland – farmland of lesser quality soils used for the production of the state’s leading agricultural crops. This land is usually irrigated but may include Non irrigated orchards or vineyards as found in some climatic zones in California. Land must have been cropped at some time during the four years prior to the mapping date. Gridded Soil Survey Geographic Database (gSSURGO) – a database containing information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS. The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. California Revised Storie Index - is a soil rating based on soil properties that govern a soil’s potential for cultivated agriculture in California. The Revised Storie Index assesses the productivity of a soil from the following four characteristics: Factor A, degree of soil profile development; factor B, texture of the surface layer; factor C, slope; and factor X, manageable features, including drainage, microrelief, fertility, acidity, erosion, and salt content. A score ranging from 0 to 100 percent is determined for each factor, and the scores are then multiplied together to derive an index rating.Electrical Conductivity - is the electrolytic conductivity of an extract from saturated soil paste, expressed as Deci siemens per meter at 25 degrees C. Electrical conductivity is a measure of the concentration of water-soluble salts in soils. It is used to indicate saline soils. High concentrations of neutral salts, such as sodium chloride and sodium sulfate, may interfere with the adsorption of water by plants because the osmotic pressure in the soil solution is nearly as high as or higher than that in the plant cells. Sodium Adsorption Ratio - is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the Ca + Mg concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced saturated hydraulic conductivity (Ksat) and aeration, and a general degradation of soil structure.

  4. a

    Visualize A Space Time Cube in 3D

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society for Conservation GIS (2020). Visualize A Space Time Cube in 3D [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/acddde8dae114381889b436fa0ff4b2f
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Society for Conservation GIS
    Description

    Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner

  5. Open Source GIS Training for Improved Protected Area Planning and Management...

    • rmi-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Republic of the Marshall Islands [Dataset]. https://rmi-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-republic-marshall
    Explore at:
    pdf(5213196), pdf(1167275), zip(151511128), pdf(3658659)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Marshall Islands, 176.18637084961 3.4531078732957)), POLYGON ((159.92660522461 3.4531078732957, 159.92660522461 16.662506225635, 176.18637084961 16.662506225635
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  6. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  7. a

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai

    • hub.arcgis.com
    • opendata.hawaii.gov
    • +2more
    Updated Feb 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2021). 1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai [Dataset]. https://hub.arcgis.com/datasets/cacee8d442624c719902ac599070f116
    Explore at:
    Dataset updated
    Feb 11, 2021
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  8. d

    Human Alterations of the Global Floodplains: 1992 to 2019 (version 1)

    • search.dataone.org
    • hydroshare.org
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adnan Rajib; Qianjin Zheng; Itohaosa Isibor (2023). Human Alterations of the Global Floodplains: 1992 to 2019 (version 1) [Dataset]. http://doi.org/10.4211/hs.cdb5fd97e0644a14b22e58d05299f69b
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Adnan Rajib; Qianjin Zheng; Itohaosa Isibor
    Area covered
    Description

    Here we present the first-available global dataset that quantifies human alterations in 15 million sq km floodplains along the world’s 520 major river basins. We developed these data using a comprehensive 27-year (1992-2019) analysis of remotely sensed land use change at 250-m resolution. This new dataset reveals that the world has lost ~600,000 sq km floodplains in 27 years (1992-2019), moving from natural forest, grassland, and wetland conditions to 460,000 sq km of new agricultural and 140,000 sq km of new developed areas.

    To ensure the maximum reuse of this dataset, we also developed three web-based semi-automatic programming tools partly supported with data-driven tutorials and step-by-step audiovisual instructions.

    (1) Floodplain Mapping Tool - Web-based Python code that runs in any internet browser using Google's high performance computing resource: https://colab.research.google.com/drive/1xQlARZXKPexmDInYV-EMoJ-HZxmFL-eW?usp=sharing - A tutorial developed and published through an online data-driven geoscience education platform: https://serc.carleton.edu/hydromodules/steps/246320.html - A YouTube video with step-by-step instructions: https://youtu.be/TgMbkJdALig

    (2) Land Use Change Tool - Web-based Python code that runs in any internet browser using Google's high performance computing resource: https://colab.research.google.com/drive/1vmIaUCkL66CoTv4rNRIWpJXYXp4TlAKd?usp=sharing - A tutorial developed and published through an online data-driven geoscience education platform: https://serc.carleton.edu/hydromodules/steps/241489.html - A YouTube video with step-by-step instructions: https://youtu.be/wH0gif_y15A

    (3) Human Alteration Tool - Web-based Python code that runs in any internet browser using Google's high performance computing resource: https://colab.research.google.com/drive/1r2zNJNpd3aWSuDV2Kc792qSEjvDbFtBy?usp=sharing

    Note, the floodplain dataset used in this analysis (GFPLAIN250m; Nardi et al., 2019) does not cover deserts and ice-covered regions. Hence, places like northern Africa, Persian Gulf, Tibetan plateau, and the region above 60 degrees north latitude are not included in this analysis.

    This global floodplain alteration dataset is built off our recent work published in the Nature Scientific Data: Rajib et al. (2021). The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset. https://doi.org/10.1038/s41597-021-01048-w

  9. Z

    Selkie GIS Techno-Economic Tool input datasets

    • data.niaid.nih.gov
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cullinane, Margaret (2023). Selkie GIS Techno-Economic Tool input datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10083960
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    University College Cork
    Authors
    Cullinane, Margaret
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data was prepared as input for the Selkie GIS-TE tool. This GIS tool aids site selection, logistics optimization and financial analysis of wave or tidal farms in the Irish and Welsh maritime areas. Read more here: https://www.selkie-project.eu/selkie-tools-gis-technoeconomic-model/

    This research was funded by the Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate and the Marine and by the Sustainable Energy Authority of Ireland (SEAI). Support was also received from the European Union's European Regional Development Fund through the Ireland Wales Cooperation Programme as part of the Selkie project.

    File Formats

    Results are presented in three file formats:

    tif Can be imported into a GIS software (such as ARC GIS) csv Human-readable text format, which can also be opened in Excel png Image files that can be viewed in standard desktop software and give a spatial view of results

    Input Data

    All calculations use open-source data from the Copernicus store and the open-source software Python. The Python xarray library is used to read the data.

    Hourly Data from 2000 to 2019

    • Wind - Copernicus ERA5 dataset 17 by 27.5 km grid
      10m wind speed

    • Wave - Copernicus Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis dataset 3 by 5 km grid

    Accessibility

    The maximum limits for Hs and wind speed are applied when mapping the accessibility of a site.
    The Accessibility layer shows the percentage of time the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5) are below these limits for the month.

    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined by checking if
    the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total number of hours for the month.

    Environmental data is from the Copernicus data store (https://cds.climate.copernicus.eu/). Wave hourly data is from the 'Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis' dataset.
    Wind hourly data is from the ERA 5 dataset.

    Availability

    A device's availability to produce electricity depends on the device's reliability and the time to repair any failures. The repair time depends on weather
    windows and other logistical factors (for example, the availability of repair vessels and personnel.). A 2013 study by O'Connor et al. determined the
    relationship between the accessibility and availability of a wave energy device. The resulting graph (see Fig. 1 of their paper) shows the correlation between accessibility at Hs of 2m and wind speed of 15.0m/s and availability. This graph is used to calculate the availability layer from the accessibility layer.

    The input value, accessibility, measures how accessible a site is for installation or operation and maintenance activities. It is the percentage time the
    environmental conditions, i.e. the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5), are below operational limits.
    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined
    by checking if the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total
    number of hours for the month. Once the accessibility was known, the percentage availability was calculated using the O'Connor et al. graph of the relationship between the two. A mature technology reliability was assumed.

    Weather Window

    The weather window availability is the percentage of possible x-duration windows where weather conditions (Hs, wind speed) are below maximum limits for the
    given duration for the month.

    The resolution of the wave dataset (0.05° × 0.05°) is higher than that of the wind dataset
    (0.25° x 0.25°), so the nearest wind value is used for each wave data point. The weather window layer is at the resolution of the wave layer.

    The first step in calculating the weather window for a particular set of inputs (Hs, wind speed and duration) is to calculate the accessibility at each timestep.
    The accessibility is based on a simple boolean evaluation: are the wave and wind conditions within the required limits at the given timestep?

    Once the time series of accessibility is calculated, the next step is to look for periods of sustained favourable environmental conditions, i.e. the weather
    windows. Here all possible operating periods with a duration matching the required weather-window value are assessed to see if the weather conditions remain
    suitable for the entire period. The percentage availability of the weather window is calculated based on the percentage of x-duration windows with suitable
    weather conditions for their entire duration.The weather window availability can be considered as the probability of having the required weather window available
    at any given point in the month.

    Extreme Wind and Wave

    The Extreme wave layers show the highest significant wave height expected to occur during the given return period. The Extreme wind layers show the highest wind speed expected to occur during the given return period.

    To predict extreme values, we use Extreme Value Analysis (EVA). EVA focuses on the extreme part of the data and seeks to determine a model to fit this reduced
    portion accurately. EVA consists of three main stages. The first stage is the selection of extreme values from a time series. The next step is to fit a model
    that best approximates the selected extremes by determining the shape parameters for a suitable probability distribution. The model then predicts extreme values
    for the selected return period. All calculations use the python pyextremes library. Two methods are used - Block Maxima and Peaks over threshold.

    The Block Maxima methods selects the annual maxima and fits a GEVD probability distribution.

    The peaks_over_threshold method has two variable calculation parameters. The first is the percentile above which values must be to be selected as extreme (0.9 or 0.998). The second input is the time difference between extreme values for them to be considered independent (3 days). A Generalised Pareto Distribution is fitted to the selected
    extremes and used to calculate the extreme value for the selected return period.

  10. CrimeMapTutorial Workbooks and Sample Data for ArcView and MapInfo, 2000

    • icpsr.umich.edu
    • catalog.data.gov
    • +1more
    Updated Apr 12, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gorr, Wilpen L. (2001). CrimeMapTutorial Workbooks and Sample Data for ArcView and MapInfo, 2000 [Dataset]. http://doi.org/10.3886/ICPSR03143.v1
    Explore at:
    Dataset updated
    Apr 12, 2001
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Gorr, Wilpen L.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3143/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3143/terms

    Area covered
    United States
    Dataset funded by
    United States Department of Justice. Office of Justice Programs. National Institute of Justice
    Description

    CrimeMapTutorial is a step-by-step tutorial for learning

    crime mapping using ArcView GIS or MapInfo Professional GIS. It was

    designed to give users a thorough introduction to most of the

    knowledge and skills needed to produce daily maps and spatial data

    queries that uniformed officers and detectives find valuable for crime

    prevention and enforcement. The tutorials can be used either for

    self-learning or in a laboratory setting. The geographic information

    system (GIS) and police data were supplied by the Rochester, New York,

    Police Department. For each mapping software package, there are three

    PDF tutorial workbooks and one WinZip archive containing sample data

    and maps. Workbook 1 was designed for GIS users who want to learn how

    to use a crime-mapping GIS and how to generate maps and data queries.

    Workbook 2 was created to assist data preparers in processing police

    data for use in a GIS. This includes address-matching of police

    incidents to place them on pin maps and aggregating crime counts by

    areas (like car beats) to produce area or choropleth maps. Workbook 3

    was designed for map makers who want to learn how to construct useful

    crime maps, given police data that have already been address-matched

    and preprocessed by data preparers. It is estimated that the three

    tutorials take approximately six hours to complete in total, including

    exercises.

  11. r

    India: Land Cover

    • opendata.rcmrd.org
    • goa-state-gis-esriindia1.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Land Cover [Dataset]. https://opendata.rcmrd.org/maps/9aeb44fb438645e8ae8387231f5c2815
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  12. Open Source GIS Training for Improved Protected Area Planning and Management...

    • samoa-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in Samoa [Dataset]. https://samoa-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-samoa
    Explore at:
    pdf(1016525), zip(791238585), pdf(4922394), pdf(3655929)Available download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Samoa, POLYGON ((186.75230026245 -14.517952072974, 186.75230026245 -13.120440826626, 188.90562057495 -14.517952072974)), 188.90562057495 -13.120440826626
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  13. d

    Data from: U.S. Geological Survey Hydrologic Toolbox Software Archive

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). U.S. Geological Survey Hydrologic Toolbox Software Archive [Dataset]. https://catalog.data.gov/dataset/u-s-geological-survey-hydrologic-toolbox-software-archive
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This software archive is superseded by Hydrologic Toolbox v1.1.0, available at the following citation: Barlow, P.M., McHugh, A.R., Kiang, J.E., Zhai, T., Hummel, P., Duda, P., and Hinz, S., 2024, U.S. Geological Survey Hydrologic Toolbox version 1.1.0 software archive: U.S. Geological Survey software release, https://doi.org/10.5066/P13VDNAK. The U.S. Geological Survey Hydrologic Toolbox is a Windows-based desktop software program that provides a graphical and mapping interface for analysis of hydrologic time-series data with a set of widely used and standardized computational methods. The software combines the analytical and statistical functionality provided in the U.S. Geological Survey (USGS) Groundwater (Barlow and others, 2014) and Surface-Water (Kiang and others, 2018) Toolboxes and provides several enhancements to these programs. The main analysis methods are the computation of hydrologic-frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10); the computation of design flows, including biologically based flows; the computation of flow-duration curves and duration hydrographs; eight computer-programming methods for hydrograph separation of a streamflow time series, including the BFI (Base-flow index), HYSEP, PART, and SWAT Bflow methods and Eckhardt’s two-parameter digital-filtering method; and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater-recharge values from streamflow data. Several of the statistical methods provided in the Hydrologic Toolbox are used primarily for computation of critical low-flow statistics. The Hydrologic Toolbox also facilitates retrieval of streamflow and groundwater-level time-series data from the USGS National Water Information System and outputs text reports that describe their analyses. The Hydrologic Toolbox supersedes and replaces the Groundwater and Surface-Water Toolboxes. The Hydrologic Toolbox was developed by use of the DotSpatial geographic information system (GIS) programming library, which is part of the MapWindow project (MapWindow, 2021). DotSpatial is a nonproprietary, open-source program written for the .NET framework that includes a spatial data viewer and GIS capabilities. This software archive is designed to document different versions of the Hydrologic Toolbox. Details about version changes are provided in the “Release.txt” file with this software release. Instructions for installing the software are provided in files “Installation_instructions.pdf” and “Installation_instructions.txt.” The “Installation_instructions.pdf” file includes screen captures of some of the installation steps, whereas the “Installation_instructions.txt” file does not. Each version of the Hydrologic Toolbox is provided in a separate .zip file. Citations: Barlow, P.M., Cunningham, W.L., Zhai, T., and Gray, M., 2014, U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0)—User guide for estimation of base flow, runoff, and groundwater recharge from streamflow data: U.S. Geological Survey Techniques and Methods 3–B10, 27 p., https://doi.org/10.3133/tm3B10. Kiang, J.E., Flynn, K.M., Zhai, T., Hummel, P., and Granato, G., 2018, SWToolbox: A surface-water toolbox for statistical analysis of streamflow time series: U.S. Geological Survey Techniques and Methods, book 4, chap. A–11, 33 p., https://doi.org/10.3133/tm4A11. MapWindow, 2021, MapWindow software, accessed January 9, 2021, at https://www.mapwindow.org/#home.

  14. v

    Virginia 9-1-1 & Geospatial Services Webinar Series

    • vgin.vdem.virginia.gov
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2020). Virginia 9-1-1 & Geospatial Services Webinar Series [Dataset]. https://vgin.vdem.virginia.gov/documents/VGIN::virginia-9-1-1-geospatial-services-webinar-series/explore?path=
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Virginia Geographic Information Network
    Area covered
    Virginia
    Description

    Links to recordings of the Integrated Services Program and 9-1-1 & Geospatial Services Bureau webinar series, including NG9-1-1 GIS topics such as: data preparation; data provisioning and maintenance; boundary best practices; and extract, transform, and load (ETL). Offerings include:Topic: Virginia Next Generation 9-1-1 Dashboard and Resources Update Description: Virginia recently updated the NG9-1-1 Dashboard with some new tabs and information sources and continues to develop new resources to assist the GIS data work. This webinar provides an overview of changes, a demonstration of new functionality, and a guide to finding and using new resources that will benefit Virginia public safety and GIS personnel with roles in their NG9-1-1 projects. Wednesday 16 June 2021. Recording available at: https://vimeo.com/566133775Topic: Emergency Service Boundary GIS Data Layers and Functions in your NG9-1-1 PSAP Description: Law, Fire, and Emergency Medical Service (EMS) Emergency Service Boundary (ESB) polygons are required elements of the NENA NG9-1-1 GIS data model stack that indicate which agency is responsible for primary response. While this requirement must be met in your Virginia NG9-1-1 deployment with AT&T and Intrado, there are quite a few ways you could choose to implement these polygons. PSAPs and their GIS support must work together to understand how this information will come into a NG9-1-1 i3 PSAP and how it will replace traditional ESN information in order to make good choices while implementing these layers. This webinar discusses:the function of ESNs in your legacy 9-1-1 environment, the role of ESBs in NG9-1-1, and how ESB information appears in your NG9-1-1 PSAP. Wednesday, 22 July 2020. Recording available at: https://vimeo.com/441073056#t=360sTopic: "The GIS Folks Handle That": What PSAP Professionals Need to Know about the GIS Project Phase of Next Generation 9-1-1 DeploymentDescription: Next Generation 9-1-1 (NG9-1-1) brings together the worlds of emergency communication and spatial data and mapping. While it may be tempting for PSAPs to outsource cares and concerns about road centerlines and GIS data provisioning to 'the GIS folks', GIS staff are crucial to the future of emergency call routing and location validation. Data required by NG9-1-1 usually builds on data that GIS staff already know and use for other purposes, so the transition requires them to learn more about PSAP operations and uses of core data. The goal of this webinar is to help the PSAP and GIS worlds come together by explaining the role of the GIS Project in the Virginia NG9-1-1 Deployment Steps, exploring how GIS professionals view NG9-1-1 deployment as a project, and fostering a mutual understanding of how GIS will drive NG9-1-1. 29 January 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225474Topic: Getting Your GIS Data from Here to There: Processes and Best Practices for Extract, Transform and Load (ETL) Description: During the fall of 2019, VITA-ISP staff delivered workshops on "Tools and Techniques for Managing the Growing Role of GIS in Enterprise Software." This session presents information from the workshops related to the process of extracting, transforming, and loading data (ETL), best practices for ETL, and methods for data schema comparison and field mapping as a webinar. These techniques and skills assist GIS staff with their growing role in Next Generation 9-1-1 but also apply to many other projects involving the integration and maintenance of GIS data. 19 February 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225007Topic: NG9-1-1 GIS Data Provisioning and MaintenanceDescription: VITA ISP pleased to announce an upcoming webinar about the NG9-1-1 GIS Data Provisioning and Maintenance document provided by Judy Doldorf, GISP with the Fairfax County Department of Information Technology and RAC member. This document was developed by members of the NG9-1-1 GIS workgroup within the VITA Regional Advisory Council (RAC) and is intended to provide guidance to local GIS and PSAP authorities on the GIS datasets and associated GIS to MSAG/ALI validation and synchronization required for NG9-1-1 services. The document also provides guidance on geospatial call routing readiness and the short- and long-term GIS data maintenance workflow procedures. In addition, some perspective and insight from the Fairfax County experience in GIS data preparation for the AT&T and West solution will be discussed in this webinar. 31 July 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224774Topic: NG9-1-1 Deployment DashboardDescription: I invite you to join us for a webinar that will provide an overview of our NG9-1-1 Deployment Dashboard and information about other online ISP resources. The ISP website has been long criticized for being difficult to use and find information. The addition of the Dashboard and other changes to the website are our attempt to address some of these concerns and provide an easier way to find information especially as we undertake NG9-1-1 deployment. The Dashboard includes a status map of all Virginia PSAPs as it relates to the deployment of NG9-1-1, including the total amount of funding requested by the localities and awards approved by the 9-1-1 Services Board. During this webinar, Lyle Hornbaker, Regional Coordinator for Region 5, will navigate through the dashboard and provide tips on how to more effectively utilize the ISP website. 12 June 2019. Recording not currently available. Please see the Virginia Next Generation 9-1-1 Dashboard and Resources Update webinar recording from 16 June 2021. Topic: PSAP Boundary Development Tools and Process RecommendationDescription: This webinar will be presented by Geospatial Program Manager Matt Gerike and VGIN Coordinator Joe Sewash. With the release of the PSAP boundary development tools and PSAP boundary segment compilation guidelines on the VGIN Clearinghouse in March, this webinar demonstrates the development tools, explains the process model, and discusses methods, tools, and resources available for you as you work to complete PSAP boundary segments with your neighbors. 15 May 2019. Recording available at: https://www.youtube.com/watch?v=kI-1DkUQF9Q&feature=youtu.beTopic: NG9-1-1 Data Preparation - Utilizing VITA's GIS Data Report Card ToolDescription: This webinar, presented by VGIN Coordinator Joe Sewash, Geospatial Program Manager Matt Gerike, and Geospatial Analyst Kenny Brevard will provide an overview of the first version of the tools that were released on March 25, 2019. These tools will allow localities to validate their GIS data against the report card rules, the MSAG and ALI checks used in previous report cards, and the analysis listed in the NG9-1-1 migration proposal document. We will also discuss the purpose of the tools, input requirements, initial configuration, how to run them, and how to make sense of your results. 10 April 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224495Topic: NG9-1-1 PSAP Boundary Best Practice WebinarDescription: During the months of November and December, VITA ISP staff hosted regional training sessions about best practices for PSAP boundaries as they relate to NG9-1-1. These sessions were well attended and very interactive, therefore we feel the need to do a recap and allow those that may have missed the training to attend a makeup session. 30 January 2019. Recording not currently available. Please see the PSAP Boundary Development Tools and Process Recommendation webinar recording from 15 May 2019.Topic: NG9-1-1 GIS Overview for ContractorsDescription: The Commonwealth of Virginia has started its migration to next generation 9-1-1 (NG9-1-1). This migration means that there will be a much greater reliance on geographic information (GIS) to locate and route 9-1-1 calls. VITA ISP has conducted an assessment of current local GIS data and provided each locality with a report. Some of the data from this report has also been included in the localities migration proposal, which identifies what data issues need to be resolved before the locality can migrate to NG9-1-1. Several localities in Virginia utilize a contractor to maintain their GIS data. This webinar is intended for those contractors to review the data in the report, what is included in the migration proposal and how they may be called on to assist the localities they serve. It will still ultimately be up to each locality to determine whether they engage a contractor for assistance, but it is important for the contractor community to understand what is happening and have an opportunity to ask questions about the intent and goals. This webinar will provide such an opportunity. 22 August 2018. Recording not currently available. Please contact us at NG911GIS@vdem.virginia.gov if you are interested in this content.

  15. Geospatial data for the Vegetation Mapping Inventory Project of Mojave...

    • catalog.data.gov
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Mojave National Preserve and Castle Mountains National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-mojave-national-preserve-a
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Castle Mountains, Mojave Desert
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Cogan Technology, Inc. (CTI) created the digital vegetation map layer for the Mojave National Preserve and Castle Mountains National Monument project, which covered over 1.6 million acres (640,000 ha). In the accuracy assessment (AA) phase, contracted field crews collected data at 720 AA point locations that were randomly placed by map class throughout the project area. In the final phase, CTI finalized the classification, reported the AA results, revised the final vegetation map, and delivered the final products to the NPS VMI. The resulting spatial database and vegetation map layer were created using a combination of 2018 National Agriculture Imagery Program (NAIP) basemap data, ground-based verification efforts, and a two-step or hybrid mapping approach that used both manual and automated techniques. By comparing the vegetation signatures on the imagery to the field data, 87 map units (72 vegetated and 15 land-use/land-cover) were developed and used to delineate the plant communities. The interpreted vegetation polygons were then digitized into a Geographic Information System (GIS) layer that was field-tested, reviewed, and revised. The final MOJA and CAMO vegetation map layer was assessed for overall thematic accuracy at 91% with a Kappa value of 92%.

  16. Evaluate County Readiness for Relaxing Stay-at-Home Measures

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated May 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Evaluate County Readiness for Relaxing Stay-at-Home Measures [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/documents/b2e0173f418c494b973790ceca524144
    Explore at:
    Dataset updated
    May 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    This article outlines a proposed data-driven approach for mapping locations where relaxing stay-at-home measures might be appropriate. The approach is presented in three parts:A high-level overview of the proposed workflow.An example of applying the workflow to objectives for California counties.A step-by-step tutorial, with data, allowing GIS analysts to practice the workflow before applying it to their own data._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  17. Minnesota Green Step Cities

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Pollution Control Agency (2018). Minnesota Green Step Cities [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/mpca::gs-cities/about
    Explore at:
    Dataset updated
    Aug 13, 2018
    Dataset authored and provided by
    Minnesota Pollution Control Agency
    Area covered
    Description

    Minnesota GreenStep Cities is a voluntary challenge, assistance and recognition program to help cities achieve their sustainability and quality-of-life goals. This free continuous improvement program, managed by a public-private partnership, is based upon 29 best practices. Each best practice can be implemented by completing one or more actions at a 1, 2 or 3-star level, from a list of four to eight actions. ReST service documentation for developers

  18. a

    ACE Connectivity (Ranks 4 & 5)

    • cecgis-caenergy.opendata.arcgis.com
    • data.ca.gov
    • +7more
    Updated Mar 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2023). ACE Connectivity (Ranks 4 & 5) [Dataset]. https://cecgis-caenergy.opendata.arcgis.com/datasets/CAEnergy::ace-connectivity-ranks-4-5
    Explore at:
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    California Energy Commission
    License

    https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use

    Area covered
    Description

    Terrestrial Connectivity is one of the main outputs of the CA Department of Fish and Wildlife’s Areas of Conservation Emphasis (ACE) project. This dataset evaluates how an area contributes to animal movement and general ecological flow. It includes information on corridors that allow for species migration, including narrow channels through highly disturbed areas which are critical for retaining the last threads of connectivity in these areas, as well as high usage areas between large, contiguous and natural landscapes which are described as intact. The ACE Ranks are used to indicate level of connectivity conservation urgency, with essential corridors and linkages emphasized with highest level scores of 4 or 5. Areas that have high connectivity, but have not been identified as having channelized areas for species corridors or habitat linkages, are given a rank 3. Large, intact regions which also contribute to connectivity but possess greater redundancy on account of their size, are given a lower rank of 2. Areas that show no opportunity for connectivity are given the lowest rank of 1.

    Ranks 4 and 5 are used as an exclusion in the biological planning priorities component of the Core and SB 100 Terrestrial Climate Resilience Study Screens. This ensures that areas of technical resource potential identified through screening avoid lands with higher conservation value for connectivity.

    For more information about this layer and its use in electric system planning, please read the Land Use Screens Staff Report in the CEC Energy Planning Library.

  19. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Inner Mongolia University of Technology
    Chinese Academy of Agricultural Sciences
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  20. d

    Data from: GeoSuite: Friendlier than first meets the eye

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gail Curry (2023). GeoSuite: Friendlier than first meets the eye [Dataset]. http://doi.org/10.5683/SP3/NDEZXJ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Gail Curry
    Description

    In this presentation Curry explores the uses of GeoSuite and how it can be helpful when analyzing data. For example, it may help to explain why data for a specific unique indentifier may be missing from a data set because it provides population and dwelling counts for all UIDs in Canada. It can also be used to find data about a specific geographical area and gives a complete list of geographical codes in specific locations. Curry also provides helpful step-by-step instructions with visual aids to show how to use GeoSuite.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://solomonislands-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
Organization logo

Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands

Explore at:
zip(702782472), pdf(3669473), pdf(969719), pdf(5434848)Available download formats
Dataset updated
Feb 15, 2022
Dataset provided by
Pacific Regional Environment Programmehttps://www.sprep.org/
Authors
Bradley Eichelberger, SPREP PIPAP GIS Consultant
License

Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically

Area covered
Solomon Islands, 168.10043334961 -4.0464671937446, 168.10043334961 -12.561265715616)), POLYGON ((155.35629272461 -12.561265715616, 155.35629272461 -4.0464671937446
Description

Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

Search
Clear search
Close search
Google apps
Main menu