Expands the use of internal data for creating Geographic Information System (GIS) maps. SSA's Database Systems division developed a map users guide for GIS data object publishing and was made available in an internal Sharepoint site for access throughout the agency. The guide acts as the reference for publishers of GIS objects across the life-cycle in our single, central geodatabase implementation.
All of the ERS mapping applications, such as the Food Environment Atlas and the Food Access Research Atlas, use map services developed and hosted by ERS as the source for their map content. These map services are open and freely available for use outside of the ERS map applications. Developers can include ERS maps in applications through the use of the map service REST API, and desktop GIS users can use the maps by connecting to the map server directly.
A Geographic Response Strategy (GRS) is a planning document and response tool intended to guide local responders during the first 24 to 48 hours of a major coastal oil spill until professional contracted oil spill response personnel and additional resources supplied by Unified Command can arrive.More details...Map service also available.
GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live includes:
Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
5 Year GIS Strategic Plan (2022-2026) Flip Book
Integrated geospatial infrastructure is the modern pattern for connecting organizations across borders, jurisdictions, and sectors to address shared challenges. Implementation starts with a strategy, followed by the pillars of collaborative governance, data and technology, capacity building, and engagement. It is inherently multi-organizational.Whether you call your initiative Open Data, Regional GIS, Spatial Data Infrastructure (SDI), Digital Twin, Knowledge Infrastructure, Digital Ecosystem, or otherwise, collaboration is key.This guide shares good practices for new and existing ArcGIS Administrators to get the most out of your 'OneMap' Hub. See also the complimentary Configure ArcGIS Online: 'OneMap' Good Practices and 'OneMap' Hub Template How-To Guide.
There are many useful strategies for preparing GIS data for Next Generation 9-1-1. One step of preparation is making sure that all of the required fields exist (and sometimes populated) before loading into the system. While some localities add needed fields to their local data, others use an extract, transform, and load process to transform their local data into a Next Generation 9-1-1 GIS data model, and still others may do a combination of both.There are several strategies and considerations when loading data into a Next Generation 9-1-1 GIS data model. The best place to start is using a GIS data model schema template, or an empty file with the needed data layout to which you can append your data. Here are some resources to help you out. 1) The National Emergency Number Association (NENA) has a GIS template available on the Next Generation 9-1-1 GIS Data Model Page.2) The NENA GIS Data Model template uses a WGS84 coordinate system and pre-builds many domains. The slides from the Virginia NG9-1-1 User Group meeting in May 2021 explain these elements and offer some tips and suggestions for working with them. There are also some tips on using field calculator. Click the "open" button at the top right of this screen or here to view this information.3) VGIN adapted the NENA GIS Data Model into versions for Virginia State Plane North and Virginia State Plane South, as Virginia recommends uploading in your local coordinates and having the upload tools consistently transform your data to the WGS84 (4326) parameters required by the Next Generation 9-1-1 system. These customized versions only include the Site Structure Address Point and Street Centerlines feature classes. Address Point domains are set for address number, state, and country. Street Centerline domains are set for address ranges, parity, one way, state, and country. 4) A sample extract, transform, and load (ETL) for NG9-1-1 Upload script is available here.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
This data has been digitized from the Alaska Habitat Management Guide map atlases. The original maps were created at a 1:250,000 scale. The original map atlases consisted of USGS quads which were divided by regions. The regions were Arctic, Western and Interior, Southwestern, Southcentral, and Southeastern. The data consists of Distribution, Human Use, and Community Use of species. The data is to be used at a 1:250,000 scale. The AHMG was published in 1985-1986. The AHMG reports are available for download on the ARLIS website, http://www.arlis.org/docs/vol1/C/AHMG/index.html
This two-page guide breaks down the steps to upload your GIS data for NG9-1-1 and provides a chart to guide you in meeting requirements for each layer.See the GIS Recommendations for more detailed information.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
The Alaska Coastal Mapping Strategy defines four goals to guide near-term action, including acquiring priority coastal mapping datasets over the next five years, and the remainder by 2030
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.
GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.
The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.
The Peoria County GIS open data website provides GIS data, interactive maps, and digital maps free of charge under an open data license agreement. Peoria County GIS also provides custom GIS services upon request for GIS data and digital maps not available on the open data website. Please click the Download button to download and view the current custom GIS services pricing guide. All custom services are charged at $60 per hour.Contact InformationEmail: gis@peoriacounty.orgPhysical AddressPeoria County CourthouseIT Service Department - GIS Division324 Main St.Room G11Peoria, IL 61602
In this edition, we highlight the collaboration between GIS and various departments to develop a strategic plan for the GIS division. We also touch on newly acquired historical imagery, how Water Resources is using GIS to inform citizens, as well as updates to the GIS Academy.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Sulfur hexafluoride (SF6), the most potent greenhouse gas, is widely used in gas-insulated switchgear (GIS) in the power industry. With increasing electrification and deepening renewable penetration, GIS installations and SF6 emissions are expected to rise. This work provides the first comprehensive analysis of the social economic viability of eliminating SF6 in high-voltage GIS equipment. We develop a flexible and scalable benefit-cost analysis framework to assess the net social benefits of SF6 replacement strategies. Using data from the Chinese power industry, we find that the social cost of carbon and firms’ compliance with SF6 standards are critical factors. Although high-level policies to eradicate SF6 in GIS are generally beneficial, net benefits can vary significantly across local implementation realities. Nonetheless, investing in SF6 alternatives is highly cost-effective in reducing greenhouse gas emissions compared with other green technologies like wind and solar power.
Unlock precise, high-quality GIS data covering 164M+ verified locations across 220+ countries. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
What is the GIS In Utility Industry Market Size?
The GIS market in the utility industry size is forecast to increase by USD 3.55 billion at a CAGR of 19.8% between 2023 and 2028. Market expansion hinges on various factors, such as the rising adoption of Geographic Information System (GIS) solutions in the utility sector, the convergence of GIS with Building Information Modeling, and the fusion of Augmented Reality with GIS technology. These elements collectively drive market growth, reflecting advancements in spatial data analytics and technological convergence. The increased adoption of GIS solutions in the utility industry underscores the importance of geospatial data in optimizing infrastructure management. Simultaneously, the integration of GIS with BIM signifies the synergy between spatial and building information for enhanced project planning and management. Additionally, the integration of AR with GIS technology highlights the potential for interactive and interactive visualization experiences in spatial data analysis. Thus, the interplay of these factors delineates the landscape for the anticipated expansion of the market catering to GIS and related technologies.
What will be the size of Market during the forecast period?
Request Free GIS In Utility Industry Market Sample
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019 - 2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
North America
Canada
US
Europe
Germany
France
APAC
China
India
Japan
Middle East and Africa
South America
Brazil
Which is the largest segment driving market growth?
The software segment is estimated to witness significant growth during the forecast period. In the utility industry, the spatial context of geographic information systems (GIS) plays a pivotal role in site selection, land acquisition, planning, designing, visualizing, building, and project management. Utilities, including electricity, gas, water, and telecommunications providers, leverage GIS software to efficiently manage their assets and infrastructure. This technology enables the collection, management, analysis, and visualization of geospatial data, derived from satellite imaging, aerial photography, remote sensors, and artificial intelligence. Geospatial AI, sensor technology, and digital reality solutions are integral components of GIS, enhancing capabilities for smart city planning, urban planning, water management, mapping systems, grid modernization, transportation, and green buildings.
Get a glance at the market share of various regions. Download the PDF Sample
The software segment was valued at USD 541.50 million in 2018. Moreover, the geospatial industry continues to evolve, with startups and software solutions driving innovation in hardware, smart city planning, land use management, smart infrastructure planning, and smart utilities. GIS solutions facilitate 4D visualization, enabling stakeholders to overcome geospatial data barriers and make informed decisions. The utility industry's reliance on GIS extends to building information modeling, augmented reality, and smart urban planning, ultimately contributing to the growth of the geospatial technology market.
Which region is leading the market?
For more insights on the market share of various regions, Request Free Sample
North America is estimated to contribute 37% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
How do company ranking index and market positioning come to your aid?
Companies are implementing various strategies, such as strategic alliances, partnerships, mergers and acquisitions, geographical expansion, and product/service launches, to enhance their presence in the market.
AABSyS IT Pvt. Ltd. - The company offers GIS solutions such as remote sensing and computer aided design and drafting solutions for electric and gas utility.
Technavio provides the ranking index for the top 20 companies along with insights on the market positioning of:
AABSyS IT Pvt. Ltd.
Autodesk Inc.
Avineon Inc.
Bentley Systems Inc.
Blue Marble Geographics
Cadcorp Ltd.
Caliper Corp.
Environmental Systems Research Institute Inc.
General Electric Co.
Hexagon AB
Mapbox Inc.
Maxar Technologies Inc.
Mobile GIS Services Ltd.
NV5 Global Inc.
Orbital Insight Inc.
Pitney Bowes Inc.
Schneider Electric SE
SuperMap Software Co. Ltd.
Trimble Inc.
VertiGIS Ltd.
Explore our company rankings and market positioning. Request Free Sample
How can Technavio assist you in ma
An RCIS is a voluntary, non-regulatory, and non-binding conservation assessment that includes information and analyses relating to the conservation of focal species, habitats, and other conservation elements in the RCIS area. Any public agency may develop an RCIS. An RCIS establishes biological goals and objectives at the species level and describes conservation actions and habitat enhancement actions that, if implemented, will contribute to those goals and objectives. Those actions will benefit the conservation of focal species, habitats, and other natural resources, and they may be used as a basis to provide advance mitigation through the development of credits or to inform other conservation investments.
[Metadata] Description: County of Hawaii LUPAG Map as of April, 2022. Source: County of Hawaii Planning Department, April 8, 2022. The State of Hawaii GIS Program added field "Class_Name," December 2020.The County of Hawaii, Planning Department GIS data is intended to be used as a guide for planning purposes only and should not be used for boundary interpretations or other spatial analysis beyond the limitations of the data. This data set is not survey accurate and is subject to change at any time.Information shown on these maps are derived from public records that are constantly undergoing change and do not replace a site survey and is not warranted for content or accuracy. The County does not guarantee the positional or thematic accuracy of the GIS data. The GIS data or cartographic digital files are not a legal representation of any of the features in which it depicts,and disclaims any assumption of the legal status of which it represents.For more detailed metadata information, please refer to the PDF text metadata document that is distributed with the GIS data.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/hawctylupag.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Made available for NPDC GeoHUB (GIS Hub Site and Open Data Portal) :A full description is available in the Metadata. SeeTerms of Use.Notes:The "Updated" date, noted here in the item, does not accurately reflect the currency of the data within the Feature Layer.The data available for download on NPDC GeoHUB is updated daily, this results in differences between what is available online and NPDC's databases.
Identified areas planned to accommodate and absorb urban growth.
Expands the use of internal data for creating Geographic Information System (GIS) maps. SSA's Database Systems division developed a map users guide for GIS data object publishing and was made available in an internal Sharepoint site for access throughout the agency. The guide acts as the reference for publishers of GIS objects across the life-cycle in our single, central geodatabase implementation.