Facebook
Twitterhttps://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset
Facebook
TwitterArcGIS is a platform, and the platform is extending to the web. ArcGIS Online offers shared content, and has become a living atlas of the world. Ready-to-use curated content is published by Esri, Partners, and Users, and Esri is getting the ball rolling by offering authoritative data layers and tools.Specifically for Natural Resources data, Esri is offering foundational data useful for biogeographic analysis, natural resource management, land use planning and conservation. Some of the layers available are Land Cover, Wilderness Areas, Soils Range Production, Soils Frost Free Days, Watershed Delineation, Slope. The layers are available as Image Services that are analysis-ready and Geoprocessing Services that extract data for download and perform analysis.We've made large strides with online analysis. The latest release of ArcGIS Online's map viewer allows you to perform analysis on ArcGIS Online. Some of the currently available analysis tools are Find Hot Spots, Create Buffers, Summarize Within, Summarize Nearby. In addition, we've created Ready-to-use Esri hosted analysis tools that run on Esri hosted data. These are in Beta, and they include Watershed Delineation, Viewshed, Profile, and Summarize Elevation.
Facebook
TwitterFeature layer generated from running the Summarize Within solution. PA Survey Locations were summarized within PA Counties
Facebook
TwitterThis table provides summary data representing annual averages for Advanced Life Support (ASL) response time. The data shows the average performance across the entire calendar year for response time less than or equal to 7 minutes.Data is based on calls received by the Phoenix 911 system and given an Advanced Life Support (ALS) response code, indicating the nature of the call. Alarm Processing Time is calculated from the time Phoenix 911 answers the call to the time Phoenix 911 notifies a Fire department Unit. This is also known as Dispatch Time to Notification Time. Turnout Time is calculated from the time a Fire Department Unit is notified of the call to the time the unit rolls out of the station or begins proceeding to the incident. This is also known as Acknowledgment Time to Roll Time. Travel Time is calculated from the time a Fire department Unit starts proceeding to an incident to the time it arrives at the incident. This is also known as Roll Time to Arrival Time.The performance measure dashboard is available at 1.01 ALS Response Time.Additional Information Source: ImageTrend softwareContact: Mariam CoskunContact E-Mail: Mariam_Coskun@tempe.govData Source Type: TabularPreparation Method: Queried from ImageTrend using the Report Writer feature.Publish Frequency: AnnualPublish Method: ManualData Dictionary
Facebook
TwitterThis page provides data for the Carbon Neutrality performance measure. The City of Tempe is committed to protecting the environment. Carbon emissions are a significant contributor to the pollution of our atmosphere. Sources of carbon emissions include the energy used in city buildings and facilities, and in the fuel used in transit, city vehicles, and employee commuting. This performance measure puts the City on a path to being a carbon-neutral city. The municipal carbon footprint includes buildings, streetlights, water treatment, electricity, and fuel usage for fleet, transit, solid waste, and employee commute.The performance measure dashboard is available at 4.19 Carbon Neutrality. Additional Information Source: City pisions: fleet, WUD, solid waste. APS, SRP, MAG, SHROG, and Valley MetroContact: Grace KellyContact E-Mail: Grace_Kelly@tempe.govData Source Type: CSVPreparation Method: It is part of a larger data set and uses proprietary software.Publish Frequency: Every 5 yearsPublish Method: ManualData Dictionary
Facebook
TwitterA Geographic Information System (GIS) shapefile and summary tables of irrigated agricultural land-use are provided for the 15 counties fully within the Northwest Florida Water Management District (Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes, Jackson, Leon, Liberty, Okaloosa, Santa Rosa, Wakulla, Walton, and Washington counties). These files were compiled through a cooperative project between the U.S. Geological Survey and the Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated lands that were verified during field surveying that started in May 2021 and concluded in August 2021. Field data collected were crop type, irrigation system type, and primary water source used. A map image of the shapefile is also provided. Previously published estimates of irrigation acreage for years since 1982 are included in summary tables.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The GIS shapefile and summary tables provide irrigated agricultural land-use for Citrus, Hernando, Pasco, and Sumter Counties, Florida through a cooperative project between the U.S Geological Survey (USGS) and the Florida Department of Agriculture and Consumer Services (FDACS), Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated land field verified for 2019, crop type, irrigation system type, and primary water source used in Citrus, Hernando, Pasco, and Sumter Counties, Florida. A map image of the shapefile is provided in the attachment.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A Geographic Information System (GIS) shapefile and summary tables of the extent of irrigated agricultural land-use are provided for eleven counties fully or partially within the St. Johns River Water Management District (full-county extents of: Brevard, Clay, Duval, Flagler, Indian River, Nassau, Osceola, Putnam, Seminole, St. Johns, and Volusia counties). These files were compiled through a cooperative project between the U.S. Geological Survey and the Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated lands that were verified during field surveying that started in November 2022 and concluded in August 2023. Field data collected were crop type, irrigation system type, and primary water source used. A map image of the shapefile is also provided. Previously published estimates of irrigation acreage for years since 1987 are included in summary tables.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A Geographic Information System (GIS) shapefile and summary tables of irrigated agricultural land-use are provided for the fourteen counties that are fully or partially within the Suwannee River Water Management District, Florida compiled through a cooperative project between the U.S Geological Survey and the Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated lands that were verified during field trips that started in January 2020 and concluded in December 2020, and the crop type, irrigation system type, and primary water source used. A map image of the shapefile is provided. Previously published estimates of irrigation acreage for years since 1982 are included in summary tables.
Facebook
TwitterThis layer shows total trips by mode and their corresponding emissions across different neighborhoods in Seattle. The data is mapped to census tracts.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
scripts.zip
arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).
makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).
terraceDL.zip
dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A Geographic Information System (GIS) shapefile and summary tables of irrigated agricultural land-use are provided for Glades, Highlands, Martin, Okeechobee, and St. Lucie Counties, Florida. These files were compiled through a cooperative project between the U.S. Geological Survey and the Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated lands that were verified during field surveying that started in November 2023 and concluded in July 2024. Field data collected included crop type, irrigation system type, and primary water source used. A map image of the shapefile is also provided. Previously published estimates of irrigation acreage for years since 1992 are included in summary tables.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: A Lisson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8Resource type: lessonSubject topic(s): gis, geographic thinkingRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:
Facebook
TwitterCDFW BIOS GIS Dataset, Contact: Bob Coey, Description: Results of in-stream habitat surveys (Downie et al 1998 method), summarized by stream reach, for DFG surveys conducted between 1994 and 2001 (inclusive) in the Russin River Basin (CalWater 2.2.1 hydrologic area), Central Coast Region. Sampled habitat parameters, including pool type, frequency and depth; substrate class; bank vegetation composition and canopy closure; and in-stream cover, were measured at the unit scale and summarized to stream reach.
Facebook
TwitterCDFW BIOS GIS Dataset, Contact: Laura Ryley, Description: This dataset contains in-stream salmonid habitat data summarized at the reach level. The data have been summarized from habitat unit level data collected by DFG from November 2010 into September 2012. The database represents salmonid stream habitat surveys from 12 streams. Approximately 160 miles of streams were surveyed.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For more information, see the Aquatic Biodiversity Index Factsheet at https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150856" STYLE="text-decoration:underline;">https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150856.
The California Department of Fish and Wildlife’s (CDFW) Areas of Conservation Emphasis (ACE) is a compilation and analysis of the best-available statewide spatial information in California on biodiversity, rarity and endemism, harvested species, significant habitats, connectivity and wildlife movement, climate vulnerability, climate refugia, and other relevant data (e.g., other conservation priorities such as those identified in the State Wildlife Action Plan (SWAP), stressors, land ownership). ACE addresses both terrestrial and aquatic data. The ACE model combines and analyzes terrestrial information in a 2.5 square mile hexagon grid and aquatic information at the HUC12 watershed level across the state to produce a series of maps for use in non-regulatory evaluation of conservation priorities in California. The model addresses as many of CDFWs statewide conservation and recreational mandates as feasible using high quality data sources. High value areas statewide and in each USDA Ecoregion were identified. The ACE maps and data can be viewed in the ACE online map viewer, or downloaded for use in ArcGIS. For more detailed information see https://www.wildlife.ca.gov/Data/Analysis/ACE" STYLE="text-decoration:underline;">https://www.wildlife.ca.gov/Data/Analysis/ACE and https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=24326" STYLE="text-decoration:underline;">https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=24326.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For more information, see the Terrestrial Significant Habitats Factsheet at https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150834.
The California Department of Fish and Wildlife’s (CDFW) Areas of Conservation Emphasis (ACE) is a compilation and analysis of the best-available statewide spatial information in California on biodiversity, rarity and endemism, harvested species, significant habitats, connectivity and wildlife movement, climate vulnerability, climate refugia, and other relevant data (e.g., other conservation priorities such as those identified in the State Wildlife Action Plan (SWAP), stressors, land ownership). ACE addresses both terrestrial and aquatic data. The ACE model combines and analyzes terrestrial information in a 2.5 square mile hexagon grid and aquatic information at the HUC12 watershed level across the state to produce a series of maps for use in non-regulatory evaluation of conservation priorities in California. The model addresses as many of CDFWs statewide conservation and recreational mandates as feasible using high quality data sources. High value areas statewide and in each USDA Ecoregion were identified. The ACE maps and data can be viewed in the ACE online map viewer, or downloaded for use in ArcGIS. For more detailed information see https://www.wildlife.ca.gov/Data/Analysis/ACE and https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=24326.
Facebook
TwitterThe American Community Survey (ACS) provides detailed demographic, social, economic, commuting and housing statistics based on continuous survey data collection. Data collected over the most recent 5 years are batched, summarized and published the following December.
These files contain summary data for Census Block Groups (CensusACSBlockGroup.xlsx), Tracts (CensusACSTract.xlsx), minor civil divisions (CensusACSMCD.xlsx), school districts (CensusACSSchoolDistrict.xlsx), and ZIP code tabulation areas (CensusACSZipCode.xlsx). No shapefiles are included, but these data files can be joined to associated shapefile datasets available elsewhere on this site. To facilitate this, the data files are also available as DBF tables and in a geodatabase.
Starting with the 2016-2020 data, tract and block group boundaries are those used in the 2020 Census. Starting with the 2017-2021 data, ZIP Code Tabulation Areas are those defined based on the 2020 Census. If you need the most recent ACS data for the tract and block group boundaries used in the 2010 Census, contact Matt Schroeder (information below).
Facebook
TwitterThe GIS shapefile and summary tables provide irrigated agricultural land-use for Hendry and Palm Beach Counties, Florida through a cooperative project between the U.S Geological Survey (USGS) and the Florida Department of Agriculture and Consumer Services (FDACS), Office of Agricultural Water Policy. Information provided in the shapefile includes the _location of irrigated land field verified for 2019, crop type, irrigation system type, and primary water source used in Hendry and Palm Beach Counties, Florida. A map image of the shapefile is provided in the attachment.
Facebook
TwitterSummary of ANLPAC Recommendations: 2016.
Facebook
Twitterhttps://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset