Facebook
TwitterA web map used to access tax parcel, boundary, ownership, acreage, survey, zoning and tax information. Errors and Omissions Do Exist.The information provided is for reference only and subject to independent verification. User assumes all responsibility for its use.https://www.fayette-co-oh.com/Fayette County ProfileFayette County is a county located in the U.S. state of Ohio. Its county seat is Washington Court House. Fayette County was formed on March 1, 1810 from portions of Highland County and Ross County. It was named after Marie-Joseph Motier, Marquis de La Fayette, a French general and politician who took the side of the Colonials during the American Revolutionary War and who played an important role in the French Revolution.Fayette County is a part of the Virginia Military survey, which was reserved in 1783, to be allotted to Virginia soldiers. This district includes the entire counties of Adams, Brown, Clermont, Clinton, Highland, Fayette, Madison and Union; and a portion of the counties of Scioto, Pike, Ross, Pickaway, Franklin, Delaware, Marion, Hardin, Logan, Champaign, Clarke, Greene, Warren and Hamilton.Fayette County was formed January 19, 1810 (took effect March 1st) from Ross and Highland counties. Beginning at the southwest corner of Pickaway, running north “with the line of said county to the corner of Madison; thence west with the line of said Madison county to the line of Greene county; thence south with the line of Greene county to the southeast corner thereof; thence east five miles; thence south to the line of Highland county; thence east with said line to Paint Creek; thence in a straight line to the beginning.” All the lower portion was taken from Highland and the upper from Ross.The first portion of land entered within the territory of what is now Fayette county, was a part of original surveys Nos. 243 and 772, lying partly in Clinton county. The first survey lying wholly within Fayette county was No. 463, in what is now Madison township, surveyed for Thomas Overton by John O’Bannon June 30, 1776.The original townships were Jefferson, Greene, Wayne, Madison, Paint and Union. Concord township was formed in April 1818, from Greene. Marion township was formed in June, 1840 from Madison. Perry township was formed June 4, 1845, from Wayne and Greene. Jasper township was formed from Jefferson and Concord December 2, 1845.Washington C.H. was laid out originally on a part of entry 757, which contained 1200 acres and belonged to Benjamin Temple, of Logan county, Kentucky, who donated 150 acres to Fayette county, on condition that it be used as the site of the county seat. The deed of conveyance was made December 1, 1810, by Thomas S. Hind, attorney for Temple, to Robert Stewart, who was appointed by the legislature as director for the town of Washington. The town was laid off some time between December 1, 1810, and February 26, 1811, the latter being the date of the record of the town plat.Bloomingburg (originally called New Lexington) was laid out in 1815, by Solomon Bowers, and originally contained 34 and ¾ acres. On March 4, 1816, Bowers laid out and added twenty more lots. The name of the town was later changed to Bloomingburg by act of the legislature. The town was incorporated by act of the legislature, February 5, 1847.Jeffersonville was laid out March 1, 1831, by Walter B. Write and Chipman Robinson, on 100 acres of land belonging to them, they started selling the lots at $5 each. The town incorporated March 17, 1838. The first house was erected by Robert Wyley.The first railroad, now the C. & M. V., was completed in 1852; the second, now the Detroit Southern, in 1875; the third, now the C.H. & D. in 1879; and the fourth, now the B. & O. S. W., in 1884.The first permanent settler (probably) was a Mr. Wolf who settled in what is now Wayne township, in about the year 1796. - Circa 1886 - Map of Fayette County, Ohio. Issued by the Fayette County Record.
Facebook
TwitterThe Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of Fayette County, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (faco_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (faco_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (faco_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (fone_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (fone_frhi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (faco_geology_metadata_faq.pdf). Please read the fone_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (faco_geology_metadata.txt or faco_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThese parcel boundaries represent legal descriptions of property ownership, as recorded in various public documents in the local jurisdiction. The boundaries are intended for cartographic use and spatial analysis only, and not for use as legal descriptions or property surveys. Tax parcel boundaries have not been edge-matched across municipal boundaries.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterA web map used to visualize available digital parcel data for Organized Towns and Unorganized Territories throughout the state of Maine. Individual towns submit parcel data on a voluntary basis; the data are compiled by the Maine Office of GIS for dissemination by the Maine GeoLibrary, and where available, the web map also includes assessor data contained in the Parcels_ADB related table.This web map is intended for use within the Maine Geoparcel Viewer Application; it is not intended for use as a standalone web map.Within Maine, real property data is maintained by the government organization responsible for assessing and collecting property tax for a given location. Organized towns and townships maintain authoritative data for their communities and may voluntarily submit these data to the Maine GeoLibrary Parcel Project. Maine Parcels Organized Towns and Maine Parcels Organized Towns ADB are the product of these voluntary submissions. Communities provide updates to the Maine GeoLibrary on a non-regular basis, sometimes many years apart, which affects the currency of Maine GeoLibrary parcels data. Another resource for real property transaction data is the County Registry of Deeds, although organized town data should very closely match registry information, except in the case of in-process property conveyance transactions.
Facebook
TwitterThis Image Service of Maryland Property Data allows for the manipulation of the display properties of the Statewide Tax Maps dataset. This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/ImageServer
Facebook
Twitter
DCGIS is an interactive map that provides increased functionality for advanced users as well as access to about 150 layers of GIS data, including parcel information, contour lines, aerial photography, county park amenities, park trails, bikeways, county road construction, roundabouts, floodplains and more. It allows you to create a map at any scale you wish.
The Interactive GIS Map is intended for use on any device - mobile or desktop - with high speed access.
Facebook
TwitterThis feature layer provides digital tax parcels for the Organized Towns of the State of Maine. Within Maine, real property data is maintained by the government organization responsible for assessing and collecting property tax for a given location. Organized towns and townships maintain authoritative data for their communities and may voluntarily submit these data to the Maine GeoLibrary Parcel Project. "Maine Parcels Organized Towns Feature" and "Maine Parcels Organized Towns ADB" are the product of these voluntary submissions. Communities provide updates to the Maine GeoLibrary on a non-regular basis, which affects the currency of Maine GeoLibrary parcels data. Another resource for real property transaction data is the County Registry of Deeds, although organized town data should very closely match registry information, except in the case of in-process property conveyance transactions. In Unorganized Territories (defined as those regions of the state without a local government that assesses real property and collects property tax), the Maine Revenue Service is the authoritative source for parcel data. "Maine Parcels Unorganized Territory Feature" is the authoritative GIS data layer for the Unorganized Territories. However, it must always be used with auxiliary data obtained from the online resources of Maine Revenue Services (https://www.maine.gov/revenue/taxes/property-tax) to compile up-to-date parcel ownership information. Property maps are a fundamental base for many municipal activities. Although GIS parcel data cannot replace detailed ground surveys, the data can assist municipal officials with functions such as accurate property tax assessment, planning and zoning. Towns can link maps to an assessor's database and display local information, while town officials can show taxpayers how proposed development or changes in municipal services and regulations may affect the community. In many towns, parcel data also helps to provide public notices, plan bus routes, and carry out other municipal services.
This dataset contains municipality-submitted parcel data along with previously developed parcel data acquired through the Municipal Grants Project supported by the Maine Library of Geographic Information (Maine GeoLibrary). Grant recipient parcel data submissions were guided by standards presented to the Maine GeoLibrary Board on May 21, 2005, which are outlined in the "Standards for Digital Parcel Files" document available on the Maine GeoLibrary publications page (https://www.maine.gov/geolib/policies/standards.html). This dataset also contains municipal parcel data acquired through other sources; the data sources are identified (where available) by the field “FMSCORG”. Note: Join this feature layer with the "Maine Parcels Organized Towns ADB" table (https://maine.hub.arcgis.com/maps/maine::maine-parcels-organized-towns-feature/about?layer=1) for available ownership information. A date field, “FMUPDAT”, is attributed with the most recent update date for each individual parcel if available. The "FMUPDAT" field will not match the "Updated" value shown for the layer. "FMUPDAT" corresponds with the date of update for the individual data, while "Updated" corresponds with the date of update for the ArcGIS Online layer as a whole. Many parcels have not been updated in several years; use the "FMUPDAT" field to verify currency.
Facebook
TwitterThe Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity, Wyoming, Montana and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yell_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yell_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Montana Bureau of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMature Support Notice: This item is in mature support as of June 2021. A replacement item has not been identified at this time.This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
Facebook
TwitterThis layer contains the boundaries and IDs of the Maryland tax maps produced by Maryland Department of Planning. Tax maps, also known as assessment maps, property maps or parcel maps, are a graphic representation of real property showing and defining individual property boundaries in relationship to contiguous real property.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/MapServer/2
Facebook
TwitterFOR PLAT MAPS AND OTHER LAND DOCUMENTS, PLEASE VISIT THE COUNTY CLERK’S OFFICIAL RECORDS SEARCH: HTTPS://BEXAR.TX.PUBLICSEARCH.US.The Bexar County GIS Team does not have purview over plat maps and other land records. Please visit the Bexar County Clerk’s Official Records Search.
Facebook
TwitterTo access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021
Facebook
TwitterThe Digital Geologic-GIS Map of Russell Cave National Monument and Vicinity, Alabama is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ruca_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ruca_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ruca_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (ruca_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ruca_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ruca_geology_metadata_faq.pdf). Please read the ruca_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ruca_geology_metadata.txt or ruca_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterVector polygon map data of property parcels from Harris County, Texas containing 1,410,276 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. Parcel boundaries in GIS are created and maintained by the Assessor’s Division Mapping section and Information Technology Services. There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA
Data last synced 11-07-2025 04:26. Data synced on a Weekly interval.
Facebook
TwitterThe Digital Geologic-GIS Map of the Austin Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (aust_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (aust_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (aust_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (aust_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (aust_geology_metadata.txt or aust_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMassGIS' standardized ("Level 3") property tax parcel mapping data set was developed through a competitive procurement funded by MassGIS. Each community in the Commonwealth was bid on by one or more vendors and the unit of work awarded was a city or town. The specification for this work was Level 3 of the MassGIS Digital Parcel Standard. Standardization of assessor parcel mapping is complete for all 351 Massachusetts' cities and towns. MassGIS is now incorporating updates from municipalities into the database.This hosted feature layer is exported from MassGIS' internal database of the feature class GISDATA.L3_TAXPAR_POLY_ASSESS, which links L3_TAXPAR_POLY and L3_ASSESS. The export includes the expression:(POLY_TYPE IN ('FEE', 'TAX')) OR (POLY_TYPE IN ('ROW', 'PRIV_ROW', 'RAIL_ROW', 'WATER') AND PROP_ID IS NOT NULL)It contains several fields from GISDATA.L3_ASSESS and stacked polygons where multiple assessor records link to a parcel. It contains features that do not have an associated record in GISDATA.L3_ASSESS, except for rights of way and water bodies. ROWs and water bodies with a non-null PROP_ID are included. The data in this feature layer is used for the popups in the Massachusetts Interactive Property Map.See full data descriptionA hosted tile layer will draw very quickly at map scale of 1:18,056 (level 15) to 1:564 (level 20).
Facebook
TwitterThe Missouri Public Land Survey System is a 1:24,000 scale geographic information systems (GIS) polygon layer based on the 7.5' United States Geological Survey (USGS) topographic maps. This data set has been extensively edited to improve the accuracy of the original product.
Facebook
TwitterA web map used to access tax parcel, boundary, ownership, acreage, survey, zoning and tax information. Errors and Omissions Do Exist.The information provided is for reference only and subject to independent verification. User assumes all responsibility for its use.https://www.fayette-co-oh.com/Fayette County ProfileFayette County is a county located in the U.S. state of Ohio. Its county seat is Washington Court House. Fayette County was formed on March 1, 1810 from portions of Highland County and Ross County. It was named after Marie-Joseph Motier, Marquis de La Fayette, a French general and politician who took the side of the Colonials during the American Revolutionary War and who played an important role in the French Revolution.Fayette County is a part of the Virginia Military survey, which was reserved in 1783, to be allotted to Virginia soldiers. This district includes the entire counties of Adams, Brown, Clermont, Clinton, Highland, Fayette, Madison and Union; and a portion of the counties of Scioto, Pike, Ross, Pickaway, Franklin, Delaware, Marion, Hardin, Logan, Champaign, Clarke, Greene, Warren and Hamilton.Fayette County was formed January 19, 1810 (took effect March 1st) from Ross and Highland counties. Beginning at the southwest corner of Pickaway, running north “with the line of said county to the corner of Madison; thence west with the line of said Madison county to the line of Greene county; thence south with the line of Greene county to the southeast corner thereof; thence east five miles; thence south to the line of Highland county; thence east with said line to Paint Creek; thence in a straight line to the beginning.” All the lower portion was taken from Highland and the upper from Ross.The first portion of land entered within the territory of what is now Fayette county, was a part of original surveys Nos. 243 and 772, lying partly in Clinton county. The first survey lying wholly within Fayette county was No. 463, in what is now Madison township, surveyed for Thomas Overton by John O’Bannon June 30, 1776.The original townships were Jefferson, Greene, Wayne, Madison, Paint and Union. Concord township was formed in April 1818, from Greene. Marion township was formed in June, 1840 from Madison. Perry township was formed June 4, 1845, from Wayne and Greene. Jasper township was formed from Jefferson and Concord December 2, 1845.Washington C.H. was laid out originally on a part of entry 757, which contained 1200 acres and belonged to Benjamin Temple, of Logan county, Kentucky, who donated 150 acres to Fayette county, on condition that it be used as the site of the county seat. The deed of conveyance was made December 1, 1810, by Thomas S. Hind, attorney for Temple, to Robert Stewart, who was appointed by the legislature as director for the town of Washington. The town was laid off some time between December 1, 1810, and February 26, 1811, the latter being the date of the record of the town plat.Bloomingburg (originally called New Lexington) was laid out in 1815, by Solomon Bowers, and originally contained 34 and ¾ acres. On March 4, 1816, Bowers laid out and added twenty more lots. The name of the town was later changed to Bloomingburg by act of the legislature. The town was incorporated by act of the legislature, February 5, 1847.Jeffersonville was laid out March 1, 1831, by Walter B. Write and Chipman Robinson, on 100 acres of land belonging to them, they started selling the lots at $5 each. The town incorporated March 17, 1838. The first house was erected by Robert Wyley.The first railroad, now the C. & M. V., was completed in 1852; the second, now the Detroit Southern, in 1875; the third, now the C.H. & D. in 1879; and the fourth, now the B. & O. S. W., in 1884.The first permanent settler (probably) was a Mr. Wolf who settled in what is now Wayne township, in about the year 1796. - Circa 1886 - Map of Fayette County, Ohio. Issued by the Fayette County Record.