93 datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. Open Source GIS Training for Improved Protected Area Planning and Management...

    • rmi-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Republic of the Marshall Islands [Dataset]. https://rmi-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-republic-marshall
    Explore at:
    pdf(5213196), pdf(1167275), zip(151511128), pdf(3658659)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Marshall Islands, 176.18637084961 3.4531078732957)), 159.92660522461 16.662506225635, 176.18637084961 16.662506225635, POLYGON ((159.92660522461 3.4531078732957
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  3. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • solomonislands-data.sprep.org
    pdf, zip
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
    Explore at:
    pdf(5434848), pdf(969719), zip, pdf(3669473)Available download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Solomon Islands, 168.10043334961 -12.561265715616)), POLYGON ((155.35629272461 -12.561265715616, 168.10043334961 -4.0464671937446, 155.35629272461 -4.0464671937446
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  4. BOGS Training Metrics

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Indian Affairs (BIA) (2025). BOGS Training Metrics [Dataset]. https://catalog.data.gov/dataset/bogs-training-metrics
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset provided by
    Bureau of Indian Affairshttp://www.bia.gov/
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  5. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • samoa-data.sprep.org
    pdf, zip
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Samoa [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-samoa
    Explore at:
    pdf(1016525), zip, pdf(3655929), pdf(4922394)Available download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    188.90562057495 -13.120440826626, 186.75230026245 -13.120440826626, 188.90562057495 -14.517952072974)), POLYGON ((186.75230026245 -14.517952072974, Samoa
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  6. Z

    Survey data for "Remote Sensing & GIS Training in Ecology and Conservation"

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulloa-Torrealba, Yrneh Z. (2020). Survey data for "Remote Sensing & GIS Training in Ecology and Conservation" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_49870
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Ulloa-Torrealba, Yrneh Z.
    Ortmann, Antonia
    Wohlfahrt, Christian
    Bell, Alexandra
    Bernd, Asja
    Braun, Daniela
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This file provides the raw data of an online survey intended at gathering information regarding remote sensing (RS) and Geographical Information Systems (GIS) for conservation in academic education. The aim was to unfold best practices as well as gaps in teaching methods of remote sensing/GIS, and to help inform how these may be adapted and improved. A total of 73 people answered the survey, which was distributed through closed mailing lists of universities and conservation groups.

  7. Esri Maps for Public Policy

    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • climate-center-lincolninstitute.hub.arcgis.com
    • +3more
    Updated Oct 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Maps for Public Policy [Dataset]. https://center-for-community-investment-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

  8. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Poland, Kielce
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

  9. D

    Geographic Information System Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.



    Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.



    Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.



    Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.



    Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.



    Component Analysis



    The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.



    In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.



    The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.



  10. U

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Black (2023). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. http://doi.org/10.5066/P9RGW46K
    Explore at:
    Dataset updated
    Mar 28, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Sarah Black
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Dec 2, 2020
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  11. a

    13.2 Building Models for GIS Analysis Using ArcGIS

    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.2 Building Models for GIS Analysis Using ArcGIS [Dataset]. https://hub.arcgis.com/documents/383bea21ddd94319a3cf86c1994ac652
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS has many analysis and geoprocessing tools that can help you solve real-world problems with your data. In some cases, you are able to run individual tools to complete an analysis. But sometimes you may require a more comprehensive way to create, share, and document your analysis workflow.In these situations, you can use a built-in application called ModelBuilder to create a workflow that you can reuse, modify, save, and share with others.In this course, you will learn the basics of working with ModelBuilder and creating models. Models contain many different elements, many of which you will learn about. You will also learn how to work with models that others create and share with you. Sharing models is one of the major advantages of working with ModelBuilder and models in general. You will learn how to prepare a model for sharing by setting various model parameters.After completing this course, you will be able to:Identify model elements and states.Describe a prebuilt model's processes and outputs.Create and document models for site selection and network analysis.Define model parameters and prepare a model for sharing.

  12. r

    GIS-material for the archaeological project: Kvarn military training area

    • researchdata.se
    Updated Jul 7, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swedish National Heritage Board, UV Öst (2016). GIS-material for the archaeological project: Kvarn military training area [Dataset]. http://doi.org/10.5878/001853
    Explore at:
    (29567), (1591558), (72435)Available download formats
    Dataset updated
    Jul 7, 2016
    Dataset provided by
    Uppsala University
    Authors
    Swedish National Heritage Board, UV Öst
    Time period covered
    1050 - 2000
    Area covered
    Kristberg Parish, Motala Municipality, Sweden
    Description

    The ZIP file consist of GIS files and an Access database with information about the excavations, findings and other metadata about the archaeological survey.

  13. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Russia, Canada, United States, Germany, Global
    Description

    Snapshot img

    GIS In Utility Industry Market Size 2025-2029

    The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.

    The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.

    What will be the Size of the GIS In Utility Industry Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure. Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.

    How is this GIS In Utility Industry Industry segmented?

    The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma

  14. layers analysis

    • figshare.com
    zip
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Alharbi; Muhammad Almatar (2025). layers analysis [Dataset]. http://doi.org/10.6084/m9.figshare.28599647.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Abdullah Alharbi; Muhammad Almatar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Kuwait's arid desert landscape, geological formations, and extreme climate conditions make it a potential site for establishing a terrestrial Mars analog, as this research presents a new GIS-based methodology. The Analog Conjunctive Method (ACM) was specifically developed to identify a suitable location in Kuwait to hold a terrestrial Mars analog using a geographic information system (GIS) and remote sensing techniques. Analogs play a crucial role in simulating different Martian conditions, supporting astronaut training, testing various exploration technologies, and doing different types of scientific research on these environments. The ACM method integrates GIS and remote sensing techniques to evaluate the study area, resulting in potential sites for analog. The analysis employs two stages to finalize the best location. In stage one, the newly developed ACM is applied; it systematically eliminates unstable areas while allowing minimal flexibility for real-world environmental adjustment, particularly in regions with natural wind barriers. ACM is used to process the buffers created for the seven criteria (urban areas and farms, coastal areas, streets, airports, oil fields, natural reserves, and country borders) in QGIS to exclude unsuitable areas. Stage two screens the stage one map locations using different data (STRM, Copernicus sentinel-2, and field visits) to polish the selection based on other criteria (water bodies, dust rate, vegetation cover, and topography). The result shows nine locations in Jal Al-Zor as potential analog sites where a random location is selected for a 3D model creation to visualize the analog. Java Mission-planning and Analysis for Remote Sensing (JMARS) software was used to identify similarities between specific areas, such as the Jal Al-Zor escarpment and Huwaimllyah sand dunes in the Kuwait desert, and comparable terrains on Mars. The research concluded that Jal Al-Zor holds substantial potential as a terrestrial Mars analog site due to its geological and topographical similarities to Martian landscapes. This makes it an ideal location for crew training, Mars equipment testing, and further research in Mars analog studies, providing valuable insights for future planetary exploration.

  15. G

    GIS Software in Agriculture Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Software in Agriculture Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-software-in-agriculture-565520
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for GIS software in agriculture is experiencing robust growth, driven by the increasing need for precision agriculture techniques and the rising adoption of smart farming practices. This sector leverages Geographic Information Systems (GIS) to optimize various agricultural operations, including land management, crop monitoring, yield prediction, and resource allocation. The market's value in 2025 is estimated at $2.5 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This growth trajectory is fueled by several key factors. Firstly, the escalating demand for higher crop yields and improved resource efficiency in the face of a growing global population is a primary driver. Secondly, advancements in sensor technologies, satellite imagery, and data analytics are providing increasingly precise and actionable agricultural insights. Finally, government initiatives promoting digital agriculture and precision farming technologies are further stimulating market expansion. Despite significant growth, challenges remain. High initial investment costs for GIS software and the required hardware can be a barrier to entry for smaller farms and developing economies. Furthermore, the complexity of implementing and effectively utilizing GIS solutions requires skilled personnel, creating a need for increased training and support. However, the long-term benefits of enhanced efficiency, reduced waste, and improved yields are overcoming these obstacles, creating a positive outlook for market expansion. Key players such as Autodesk, Esri, and Trimble are actively innovating and expanding their agricultural GIS offerings to cater to the evolving needs of the sector. The market is segmented by software type (desktop, web-based, mobile), deployment mode (cloud, on-premise), and application (precision farming, irrigation management, crop monitoring). The continued integration of AI and machine learning within GIS platforms promises further advancements in agricultural optimization, propelling market growth in the coming years.

  16. M

    MLCCS NPC model training data layers

    • gisdata.mn.gov
    esri_toolbox, html
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2024). MLCCS NPC model training data layers [Dataset]. https://gisdata.mn.gov/dataset/biota-mlccs-npc-model-training
    Explore at:
    html, esri_toolboxAvailable download formats
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Natural Resources Department
    Description
  17. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • vanuatu-data.sprep.org
    pdf, zip
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Vanuatu [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-vanuatu
    Explore at:
    pdf(3536989), zip, pdf(5713678), pdf(889630)Available download formats
    Dataset updated
    Jan 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Vanuatu, 171.96762084961 -21.602534873927)), 164.40902709961 -9.000382438291, POLYGON ((164.40902709961 -21.602534873927, 171.96762084961 -9.000382438291
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on February 26-28, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  18. a

    14.4 Python Scripting for Geoprocessing Workflows

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 14.4 Python Scripting for Geoprocessing Workflows [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/4e1daccaf7504b8badb720407810e713
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Python language offers an efficient way to automate and extend geoprocessing and mapping functionality. In ArcGIS 10, Python was fully integrated into ArcGIS Desktop with the addition of the Python window and the ArcPy site package. This course introduces Python scripting within ArcGIS Desktop to automate geoprocessing workflows. These skills are needed by GIS analysts to work efficiently and productively with ArcGIS for Desktop.After completing this course, you will be able to:Create geoprocessing scripts using the ArcPy site package.Identify common scripting workflows.Write Python scripts that create and update data.Create a script tool using built-in validation.

  19. n

    Operations Response - NAPSG Tutorial

    • prep-response-portal.napsgfoundation.org
    • napsg.hub.arcgis.com
    Updated Dec 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). Operations Response - NAPSG Tutorial [Dataset]. https://prep-response-portal.napsgfoundation.org/documents/ae53a07c34f3453386eb59be3738434f
    Explore at:
    Dataset updated
    Dec 5, 2019
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations StaffProblem: Your County Emergency Management Agency is planning a training exercise and wants to make use of “Web GIS.” Typically, they have you print out a new wall map each operational period and the status of facilities (e.g. shelters) are maintained in spreadsheets. This time they want to coordinate planning and operations across multiple locations, with everyone having the most up to date information on a live map. For example, they want to be able update the status of evacuation zones and shelters without requiring GIS expertise. Can you provide them with a web app that gives them some simple tools and just the layers they need to get started? Use a simulated flood or any other incident type to guide you through this process.Solution: Operations Response AppRequirements: You will need a license for ArcGIS Pro and ArcGIS Online to complete this tutorial.Note: This application is used with the Public Information Application Tutorial.

  20. r

    GIS-material for the archaeological project: Trial trenches at Kvarn...

    • researchdata.se
    Updated Jul 8, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swedish National Heritage Board, UV Öst (2016). GIS-material for the archaeological project: Trial trenches at Kvarn military training area [Dataset]. http://doi.org/10.5878/001886
    Explore at:
    (77999), (1266151), (36929)Available download formats
    Dataset updated
    Jul 8, 2016
    Dataset provided by
    Uppsala University
    Authors
    Swedish National Heritage Board, UV Öst
    Area covered
    Kristberg Parish, Sweden, Motala Municipality
    Description

    The ZIP file consist of GIS files and an Access database with information about the excavations, findings and other metadata about the archaeological survey.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu