80 datasets found
  1. H

    Data from: Hydrologic Terrain Analysis Using Web Based Tools

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Apr 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang (2018). Hydrologic Terrain Analysis Using Web Based Tools [Dataset]. https://www.hydroshare.org/resource/e1d4f2aff7d84f79b901595f6ea48368
    Explore at:
    zip(49.8 MB)Available download formats
    Dataset updated
    Apr 11, 2018
    Dataset provided by
    HydroShare
    Authors
    David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Digital Elevation Models (DEM) are widely used to derive information for the modeling of hydrologic processes. The basic model for hydrologic terrain analysis involving hydrologic conditioning, determination of flow field (flow directions) and derivation of hydrologic derivatives is available in multiple software packages and GIS systems. However as areas of interest for terrain analysis have increased and DEM resolutions become finer there remain challenges related to data size, software and a platform to run it on, as well as opportunities to derive new kinds of information useful for hydrologic modeling. This presentation will illustrate new functionality associated with the TauDEM software (http://hydrology.usu.edu/taudem) and new web based deployments of TauDEM to make this capability more accessible and easier to use. Height Above Nearest Drainage (HAND) is a special case of distance down the flow field to an arbitrary target, with the target being a stream and distance measured vertically. HAND is one example of a general class of hydrologic proximity measures available in TauDEM. As we have implemented it, HAND uses multi-directional flow directions derived from a digital elevation model (DEM) using the Dinifinity method in TauDEM to determine the height of each grid cell above the nearest stream along the flow path from that cell to the stream. With this information, and the depth of flow in the stream, the potential for, and depth of flood inundation can be determined. Furthermore, by dividing streams into reaches or segments, the area draining to each reach can be isolated and a series of threshold depths applied to the grid of HAND values in that isolated reach catchment, to determine inundation volume, surface area and wetted bed area. Dividing these by length yields reach average cross section area, width, and wetted perimeter, information that is useful for hydraulic routing and stage-discharge rating calculations in hydrologic modeling. This presentation will describe the calculation of HAND and its use to determine hydraulic properties across the US for prediction of stage and flood inundation in each NHDPlus reach modeled by the US NOAA’s National Water Model. This presentation will also describe two web based deployments of TauDEM functionality. The first is within a Jupyter Notebook web application attached to HydroShare that provides users the ability to execute TauDEM on this cloud infrastructure without the limitations associated with desktop software installation and data/computational capacity. The second is a web based rapid watershed delineation function deployed as part of Model My Watershed (https://app.wikiwatershed.org/) that enables delineation of watersheds, based on NHDPlus gridded data anywhere in the continental US for watershed based hydrologic modeling and analysis.

    Presentation for European Geophysical Union Meeting, April 2018, Vienna. Tarboton, D. G., N. Sazib, A. Castronova, Y. Liu, X. Zheng, D. Maidment, A. Aufdenkampe and S. Wang, (2018), "Hydrologic Terrain Analysis Using Web Based Tools," European Geophysical Union General Assembly, Vienna, April 12, Geophysical Research Abstracts 20, EGU2018-10337, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10337.pdf.

  2. d

    Digital Elevation Models and GIS in Hydrology (M2)

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2022). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Irene Garousi-Nejad; Belize Lane
    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  3. Terrain - Slope Map

    • hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated Dec 31, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain - Slope Map [Dataset]. https://hub.arcgis.com/datasets/a1ba14d09df14f42ad6ca3c4bcebf3b4
    Explore at:
    Dataset updated
    Dec 31, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map provides a colorized representation of slope, generated dynamically using server-side slope function on the Terrain layer. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. Note: If access to non-scaled slope values is required, use the Slope Degrees or Slope Percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope Percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.

    This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  4. D

    Digital Elevation Models Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Elevation Models Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-elevation-models-1984584
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The booming Digital Elevation Model (DEM) market is projected to reach $2.8 billion by 2033, fueled by LiDAR advancements, satellite imagery accessibility, and smart city initiatives. Explore key trends, market drivers, and leading companies shaping this dynamic sector.

  5. Terrain - Multi-directional Hillshade

    • gis-idaho.hub.arcgis.com
    • hub.arcgis.com
    Updated Jul 21, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain - Multi-directional Hillshade [Dataset]. https://gis-idaho.hub.arcgis.com/maps/7cd69c48b3d3442a92741a8ddcd0bc94
    Explore at:
    Dataset updated
    Jul 21, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This web map provides a hillshaded surface generated dynamically using a multi-directional hillshade server-side function on the World Elevation Terrain layer. The z factor is varied based on scale so that a suitable hillshade is visible at all scales. This layer is useful for visualization of the Terrain because it is easy to interpret and use as a base layer in applications and maps.For more information about uses, refer Introducing Esri’s Next Generation Hillshade.What can you do with this layer?Use for Visualization: Yes. Multi-Directional Hillshade provides a quick indication of the shape of the terrain at a range of map scales. The image service can be added to web applications or other maps to enhance contextual understanding.Use for Analysis: No. A hillshade is generally not used for analysis.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer.

  6. f

    Shaping pre-modern digital terrain models: The former topography at...

    • figshare.com
    png
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Schmidt; Lukas Werther; Christoph Zielhofer (2023). Shaping pre-modern digital terrain models: The former topography at Charlemagne’s canal construction site [Dataset]. http://doi.org/10.1371/journal.pone.0200167
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Johannes Schmidt; Lukas Werther; Christoph Zielhofer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The use of remote sensing techniques to identify (geo)archaeological features is wide spread. For archaeological prospection and geomorphological mapping, Digital Terrain Models (DTMs) on based LiDAR (Light Detection And Ranging) are mainly used to detect surface and subsurface features. LiDAR is a remote sensing tool that scans the surface with high spatial resolution and allows for the removal of vegetation cover with special data filters. Archaeological publications with LiDAR data in issues have been rising exponentially since the mid-2000s. The methodology of DTM analyses within geoarchaeological contexts is usually based on “bare-earth” LiDAR data, although the terrain is often significantly affected by human activities. However, “bare-earth” LiDAR data analyses are very restricted in the case of historic hydro-engineering such as irrigation systems, mills, or canals because modern roads, railway tracks, buildings, and earth lynchets influence surface water flows and may dissect the terrain. Consequently, a "natural" pre-modern DTM with high depth accuracy is required for palaeohydrological analyses. In this study, we present a GIS-based modelling approach to generate a pre-modern and topographically purged DTM. The case study focuses on the landscape around the Early Medieval Fossa Carolina, a canal constructed by Charlemagne and one of the major medieval engineering projects in Europe. Our aim is to reconstruct the pre-modern relief around the Fossa Carolina for a better understanding and interpretation of the alignment of the Carolingian canal. Our input data are LiDAR-derived DTMs and a comprehensive vector layer of anthropogenic structures that affect the modern relief. We interpolated the residual points with a spline algorithm and smoothed the result with a low pass filter. The purged DTM reflects the pre-modern shape of the landscape. To validate and ground-truth the model, we used the levels of recovered pre-modern soils and surfaces that have been buried by floodplain deposits, colluvial layers, or dam material of the Carolingian canal. We compared pre-modern soil and surface levels with the modelled pre-modern terrain levels and calculated the overall error. The modelled pre-modern surface fits with the levels of the buried soils and surfaces. Furthermore, the pre-modern DTM allows us to model the most favourable course of the canal with minimal earth volume to dig out. This modelled pathway corresponds significantly with the alignment of the Carolingian canal. Our method offers various new opportunities for geoarchaeological terrain analysis, for which an undisturbed high-precision pre-modern surface is crucial.

  7. a

    Terrain Multi-Directional Hillshade

    • egisdata-dallasgis.hub.arcgis.com
    Updated Jul 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Dallas GIS Services (2022). Terrain Multi-Directional Hillshade [Dataset]. https://egisdata-dallasgis.hub.arcgis.com/content/49226a42c0814b8a986b16869294336e
    Explore at:
    Dataset updated
    Jul 30, 2022
    Dataset authored and provided by
    City of Dallas GIS Services
    Area covered
    Description

    This map provides a hillshaded surface generated dynamically using a multi-directional hillshade server-side custom function on the World Elevation Terrain layer. This algorithm computes hillshade from six different directions, where each hillshade is multiplied by a weight and thereafter the sum of all is normalized to produce the final output. The z factor is varied based on scale so that a suitable hillshade is visible at all scales. This layer is useful for visualization of the Terrain because it is easy to interpret and use as a base layer in applications and maps.For more information about uses, refer Introducing Esri’s Next Generation Hillshade.What can you do with this layer?Use for Visualization: Yes. Multi-Directional Hillshade provides a quick indication of the shape of the terrain at a range of map scales. The image service can be added to web applications or other maps to enhance contextual understanding.Use for Analysis: No. A hillshade is generally not used for analysis.Note: If you intend to use it as basemap, consider using the tiled version of this service i.e. World Hillshade, which provides fast and performant rendering.Data Sources and Coverage: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  8. Basic data acquisition and quality.

    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Schmidt; Lukas Werther; Christoph Zielhofer (2023). Basic data acquisition and quality. [Dataset]. http://doi.org/10.1371/journal.pone.0200167.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Johannes Schmidt; Lukas Werther; Christoph Zielhofer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Basic data acquisition and quality.

  9. a

    Linear Landform Features of the Athabasca Oil Sands (in Situ) Area (GIS...

    • open.alberta.ca
    Updated Jan 1, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2002). Linear Landform Features of the Athabasca Oil Sands (in Situ) Area (GIS data, line features) - Open Government [Dataset]. https://open.alberta.ca/dataset/gda-dig_2002_0018
    Explore at:
    Dataset updated
    Jan 1, 2002
    Description

    The dataset was developed as part of the Western Economic Partnership Agreement (WEPA) project covering all of NTS 73M, southern three-quarters of 74D and southeast part of 84A. It contains all the linear landform features such as eskers, flutings and melt-water channels, etc. Part of the dataset was complied by air photo interpretations and followed by random ground-truthing (NTS73M) by AGS geologists. Dataset was then merged with other existing surficial geology maps (NTS 74D and 84A). Analysis of surficial geological materials, aspects of local relief, and morphological characteristics of surface landforms form an integral component in the evaluation of recharge fluxes to regional groundwater flow systems. To assist in the evaluation of groundwater recharge, terrain analysis maps were constructed in GIS format at a scale of 1:50 000 and 1:250 000 for most of the study area, including all of map NTS 73M (Winefred), the southern three-quarters of map NTS 74D (Waterways), and the southeast part of NTS 84A (Algar). Surficial geology maps of the portion of the study area that lies within map area NTS 83P (Pelican) were published by the surficial geology group in the Minerals Section of the Alberta Geological Survey. The terrain analysis maps in NTS 73M and NTS 84A were constructed almost entirely from the interpretation of 1:60 000 scale aerial photographs, supplemented with only a minor amount of ground verification. Terrain analysis maps in the area defined by NTS 74D were constructed from both aerial photograph analysis as well as from published surficial geology information (Bayrock, L. and Reimchen, T., 1973). Classification of the terrain was based on interpretations of landform types, tonal reflections of surface materials, differences in vegetative cover, and differences in drainage patterns and characteristics, all of which can be identified on aerial photographs. It is for this reason that the maps are referred to as aerial photograph terrain analysis maps, rather than surficial geology maps, which generally have a greater amount of ground verification. The reader is therefore cautioned that a higher degree of uncertainty exists regarding the information depicted on the terrain analysis map, compared to that on a surficial geology map.

  10. Attribute reclassification for fixed amplitude and varying Cmin.

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. Antonio Medrano (2023). Attribute reclassification for fixed amplitude and varying Cmin. [Dataset]. http://doi.org/10.1371/journal.pone.0250106.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    F. Antonio Medrano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Attribute reclassification for fixed amplitude and varying Cmin.

  11. u

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +4more
    bin
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  12. n

    BOREAS HYD-08 DEM Data over the NSA-MSA and SSA-MSA in UTM Projection

    • access.earthdata.nasa.gov
    • s.cnmilf.com
    • +6more
    zip
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). BOREAS HYD-08 DEM Data over the NSA-MSA and SSA-MSA in UTM Projection [Dataset]. http://doi.org/10.3334/ORNLDAAC/276
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 22, 2023
    Time period covered
    Jan 1, 1970 - Dec 31, 1989
    Area covered
    Description

    These DEMs were produced from digitized contours at a cell resolution of 100 meters. Vector contours of the area were used as input to a software package that interpolates between contours to create a DEM representing the terrain surface. The vector contours had a contour interval of 25 feet. The data cover the BOREAS MSAs of the SSA and NSA and are given in a UTM map projection.

  13. u

    Linear Landform Features of the Athabasca Oil Sands (in Situ) Area (GIS...

    • data.urbandatacentre.ca
    Updated Oct 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Linear Landform Features of the Athabasca Oil Sands (in Situ) Area (GIS data, line features) - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-01c4ec2f-20d5-41db-999d-aafc836a8a3b
    Explore at:
    Dataset updated
    Oct 19, 2025
    Area covered
    Canada
    Description

    The dataset was developed as part of the Western Economic Partnership Agreement (WEPA) project covering all of NTS 73M, southern three-quarters of 74D and southeast part of 84A. It contains all the linear landform features such as eskers, flutings and melt-water channels, etc. Part of the dataset was complied by air photo interpretations and followed by random ground-truthing (NTS73M) by AGS geologists. Dataset was then merged with other existing surficial geology maps (NTS 74D and 84A). Analysis of surficial geological materials, aspects of local relief, and morphological characteristics of surface landforms form an integral component in the evaluation of recharge fluxes to regional groundwater flow systems. To assist in the evaluation of groundwater recharge, terrain analysis maps were constructed in GIS format at a scale of 1:50 000 and 1:250 000 for most of the study area, including all of map NTS 73M (Winefred), the southern three-quarters of map NTS 74D (Waterways), and the southeast part of NTS 84A (Algar). Surficial geology maps of the portion of the study area that lies within map area NTS 83P (Pelican) were published by the surficial geology group in the Minerals Section of the Alberta Geological Survey. The terrain analysis maps in NTS 73M and NTS 84A were constructed almost entirely from the interpretation of 1:60 000 scale aerial photographs, supplemented with only a minor amount of ground verification. Terrain analysis maps in the area defined by NTS 74D were constructed from both aerial photograph analysis as well as from published surficial geology information (Bayrock, L. and Reimchen, T., 1973). Classification of the terrain was based on interpretations of landform types, tonal reflections of surface materials, differences in vegetative cover, and differences in drainage patterns and characteristics, all of which can be identified on aerial photographs. It is for this reason that the maps are referred to as aerial photograph terrain analysis maps, rather than surficial geology maps, which generally have a greater amount of ground verification. The reader is therefore cautioned that a higher degree of uncertainty exists regarding the information depicted on the terrain analysis map, compared to that on a surficial geology map.

  14. n

    Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and...

    • access.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana [Dataset]. https://access.earthdata.nasa.gov/collections/C2231550217-CEOS_EXTRA
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Oct 5, 2000
    Area covered
    Description

    This data set was developed to provide geologic map GIS of the Coeur d'Alene 1:100,000 quadrangle for use in future spatial analysis by a variety of users. These data can be printed in a variety of ways to display various geologic features or used for digital analysis and modeling. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g. 1:62,500 or 1:24,000).

    The digital geologic map of the Coeur d'Alene 1:100,000 quadrangle was compiled from preliminary digital datasets [Athol, Coeur d'Alene, Kellogg, Kingston, Lakeview, Lane, and Spirit Lake 15-minute quadrangles] prepared by the Idaho Geological Survey from A. B. Griggs (unpublished field maps), supplemented by Griggs (1973) and by digital data from Bookstrom and others (1999) and Derkey and others (1996). The digital geologic map database can be queried in many ways to produce a variety of derivative geologic maps.

    This GIS consists of two major Arc/Info data sets: one line and polygon file (cda100k) containing geologic contacts and structures (lines) and geologic map rock units (polygons), and one point file (cda100kp) containing structural data.

  15. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Europe, Brazil, Germany, United Arab Emirates, Japan, United Kingdom, South Korea, South America, North America, United States
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
    By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
    

    What will be the Size of the GIS Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.

    The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.

    How is this GIS Industry segmented?

    The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.

    The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.

    Request Free Sample

    The Software segment was valued at USD 5.06 billion in 2019 and sho

  16. d

    Data from: Clearing your Desk! Software and Data Services for Collaborative...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton (2021). Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis [Dataset]. https://search.dataone.org/view/sha256%3A0adb3c6a58e781cd2e1c00b3b80443ec73f5b39119d9a4701f7f4bd28c9e9cf3
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    David Tarboton
    Description

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to, or the know how to, take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the storage and sharing of a broad class of hydrologic data including time series, geographic features and rasters, multidimensional space-time data and structured collections of data representing river geometry. Web service tools and a python client library provide researchers with access to high performance computing resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This talk will illustrate web and client based use of data services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

    Presentation at Kansas University GIS Days November 18, 2015

  17. Terrain - Hillshade

    • gis-idaho.hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Dec 31, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain - Hillshade [Dataset]. https://gis-idaho.hub.arcgis.com/datasets/c3587bd89d474dff8d306fefdc295083
    Explore at:
    Dataset updated
    Dec 31, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer provides a hillshaded surface (single band grayscale image) generated dynamically using the hillshade server-side function on the Terrain layer. The hillshading is based on a solar altitude angle of 45 degrees, and solar aspect angle of 315 degrees. The z factor is varied based on scale so that a suitable hillshade is visible at all scales. This layer is useful for simple visualization of the Terrain because it is easy to interpret and use as a base layer in applications and maps. Update Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. Hillshade provides a quick indication of the shape of the terrain at a range of map scales. The image service can be added to web applications or other maps to enhance contextual understanding. Use for Analysis: No. A hillshade is generally not used for analysis. For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.

    This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  18. n

    Rauer Group 1:50000 Topographic GIS Dataset

    • access.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    Updated Jun 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Rauer Group 1:50000 Topographic GIS Dataset [Dataset]. https://access.earthdata.nasa.gov/collections/C1214313712-AU_AADC
    Explore at:
    Dataset updated
    Jun 18, 2019
    Time period covered
    Jan 1, 1960 - Dec 31, 1992
    Area covered
    Description

    Rauer Group 1:50000 Topographic GIS dataset. Data conforms to SCAR Feature Catalogue which can be searched. 10 metre contour interval on rock, 20 metre contour interval on ice up to 100 metres, 100 metre contour interval on ice above 100 metres.

  19. BareEarthDEM multiYear USFS R3 Southwest multiRes Public

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). BareEarthDEM multiYear USFS R3 Southwest multiRes Public [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/BareEarthDEM_multiYear_USFS_R3_Southwest_multiRes_Public/28836527
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a collection of bare-Earth digital elevation models covering selected U.S. Forest Service and adjoining lands in the Southwest Region, encompassing Arizona and New Mexico. The data are presented in a time-enabled format, allowing the end-user to view available data year-by-year, or all available years at once, within a GIS system. The data encompass varying years, varying resolutions, and varying geographic extents, dependent upon available data as provided by the region. Bare-Earth DEMs, also commonly called Digital Terrain Models (DTM), represent the ground topography after removal of persistent objects such as vegetation and buildings, and therefore show the natural terrain.The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  20. d

    Calculating Runoff using TOPMODEL (M6)

    • search.dataone.org
    • hydroshare.org
    Updated Oct 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2025). Calculating Runoff using TOPMODEL (M6) [Dataset]. https://search.dataone.org/view/sha256%3Ac894651d65de5e1972fa23dd8594fabd13b3db396b408ddada31d26545b4a135
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    Hydroshare
    Authors
    Irene Garousi-Nejad; Belize Lane
    Area covered
    Description

    This resource contains data inputs and an iPython Jupyter Notebook used to simulate semi-distributed variable source area runoff generation in a tributary to the Logan River. This resource is part of the HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about.

    In this activity, the student learns how to (1) calculate the topographic wetness index using digital elevation models (DEMs) following up on a previous module on DEMs and GIS in Hydrology; (2) apply TOPMODEL concepts and equations to estimate soil moisture deficit and runoff generation across a watershed given necessary watershed and storm characteristics; and (3) critically assess concepts and assumptions to determine if and why TOPMODEL is an appropriate tool given information about a specific watershed.

    Please note that this exercise sets up the data needed to estimate runoff in the Spawn Creek watershed using TOPMODEL. Spawn Creek is a tributary of the Logan River, Utah. This exercise uses some of the same data as the Logan River Exercise in Digital Elevation Models and GIS in Hydrology at https://www.hydroshare.org/resource/9c4a6e2090924d97955a197fea67fd72/. If running the TOPMODEL for other study sites, you need to prepare a DEM TIF file and an outlet shapefile for the area of interest. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang (2018). Hydrologic Terrain Analysis Using Web Based Tools [Dataset]. https://www.hydroshare.org/resource/e1d4f2aff7d84f79b901595f6ea48368

Data from: Hydrologic Terrain Analysis Using Web Based Tools

Related Article
Explore at:
zip(49.8 MB)Available download formats
Dataset updated
Apr 11, 2018
Dataset provided by
HydroShare
Authors
David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Digital Elevation Models (DEM) are widely used to derive information for the modeling of hydrologic processes. The basic model for hydrologic terrain analysis involving hydrologic conditioning, determination of flow field (flow directions) and derivation of hydrologic derivatives is available in multiple software packages and GIS systems. However as areas of interest for terrain analysis have increased and DEM resolutions become finer there remain challenges related to data size, software and a platform to run it on, as well as opportunities to derive new kinds of information useful for hydrologic modeling. This presentation will illustrate new functionality associated with the TauDEM software (http://hydrology.usu.edu/taudem) and new web based deployments of TauDEM to make this capability more accessible and easier to use. Height Above Nearest Drainage (HAND) is a special case of distance down the flow field to an arbitrary target, with the target being a stream and distance measured vertically. HAND is one example of a general class of hydrologic proximity measures available in TauDEM. As we have implemented it, HAND uses multi-directional flow directions derived from a digital elevation model (DEM) using the Dinifinity method in TauDEM to determine the height of each grid cell above the nearest stream along the flow path from that cell to the stream. With this information, and the depth of flow in the stream, the potential for, and depth of flood inundation can be determined. Furthermore, by dividing streams into reaches or segments, the area draining to each reach can be isolated and a series of threshold depths applied to the grid of HAND values in that isolated reach catchment, to determine inundation volume, surface area and wetted bed area. Dividing these by length yields reach average cross section area, width, and wetted perimeter, information that is useful for hydraulic routing and stage-discharge rating calculations in hydrologic modeling. This presentation will describe the calculation of HAND and its use to determine hydraulic properties across the US for prediction of stage and flood inundation in each NHDPlus reach modeled by the US NOAA’s National Water Model. This presentation will also describe two web based deployments of TauDEM functionality. The first is within a Jupyter Notebook web application attached to HydroShare that provides users the ability to execute TauDEM on this cloud infrastructure without the limitations associated with desktop software installation and data/computational capacity. The second is a web based rapid watershed delineation function deployed as part of Model My Watershed (https://app.wikiwatershed.org/) that enables delineation of watersheds, based on NHDPlus gridded data anywhere in the continental US for watershed based hydrologic modeling and analysis.

Presentation for European Geophysical Union Meeting, April 2018, Vienna. Tarboton, D. G., N. Sazib, A. Castronova, Y. Liu, X. Zheng, D. Maidment, A. Aufdenkampe and S. Wang, (2018), "Hydrologic Terrain Analysis Using Web Based Tools," European Geophysical Union General Assembly, Vienna, April 12, Geophysical Research Abstracts 20, EGU2018-10337, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10337.pdf.

Search
Clear search
Close search
Google apps
Main menu