City point locations are derived from boundary polygons of incorporated cities using the centroid of the polygon. Additional unincorporated points are also included. The data was created by the Transportation Planning and Programming Division of TxDOT in the Data Analysis, Mapping and Reporting Branch as a base layer for TxDOT's Cartographic products.Publish Date: June 2024Update Frequency: QuarterlySecurity Level: Public
The Unpublished Digital Geologic-GIS Map of the Cave Creek School Quadrangle, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (ccsc_geology.gdb), a 10.1 ArcMap (.mxd) map document (ccsc_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). Presently, a GRI Google Earth KMZ/KML product doesn't exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ccsc_geology_metadata.txt or ccsc_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Lyndon B. Johnson National Historical Park.
City limit boundaries are maintained to enable the classification of roadway inventory attributes, satisfy federal and state roadway reporting requirements, and serve as a base layer for TxDOT's cartographic products. The data was created by the Transportation Planning and Programming Division of TxDOT in the Data Analysis, Mapping and Reporting Branch. City governments submit updates to their city limits as changes are made.Update Frequency: PeriodicallySecurity Level: Public
This version utilizes a generalized boundary along the coast, which is sometimes necessary for analysis in which it is important to encompass segments of roadways that travel over water. Roadways on bridges or causeways that span intracoastal waterways are not covered by detailed polygons that precisely follow the coastline, therefore a generalized boundary is needed for some types of analysis where it is important to preserve such relationships.Security Level: Public
The Digital Surficial Geologic-GIS Map of the Little Pine Island Bayou Corridor Unit and Vicinity, Big Thicket National Preserve, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (lpis_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (lpis_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (lpis_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Lamar University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (lpis_surficial_geology_metadata.txt or lpis_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of the Rocky Creek Quadrangle, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (ryck_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ryck_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (lyjo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (lyjo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ryck_geology_metadata_faq.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ryck_geology_metadata.txt or ryck_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This version utilizes a generalized boundary along the coast, which is sometimes necessary for analysis in which it is important to encompass segments of roadways that travel over water. Roadways on bridges or causeways that span intracoastal waterways are not covered by detailed polygons that precisely follow the coastline, therefore a generalized boundary is needed for some types of analysis where it is important to preserve such relationships.Update Frequency: As NeededSource: Texas General Land OfficeSecurity Level: PublicOwned by TxDOT: FalseRelated LinksData Dictionary PDF [Generated 2025/03/17]
This resource contains statewide networks of roadways, railroads, bridges, and low water crossings, for Texas only.
Roadways detail: The Transportation Planning and Programming (TPP) Division of the Texas Department of Transportation (TxDOT) maintains a spatial dataset of roadway polylines for planning and asset inventory purposes, as well as for visualization and general mapping. M values are stored in the lines as DFOs (Distance From Origin), and provide the framework for managing roadway assets using linear referencing. This dataset covers the state of Texas and includes on-systems routes (those that TxDOT maintains), such as interstate highways, U.S. highways, state highways, and farm and ranch roads, as well as off-system routes, such as county roads and local streets. Date valid as of: 12/31/2014. Publish Date: 05/01/2015. Update Frequency: Quarterly.
Bridges detail: As with the roadways, both on-system and off-system bridges are maintained in separate datasets (54,844 total bridges, 36,007 on-system and 18,837 off-system). Bridges have numerous useful attributes, see coding guide [1] for documentation. One such attribute identifies structures that cross water: the second digit of Item 42 “Type of Service”. If the second digit is between 5 and 9 (inclusive) then the structure is over water. The bridges datasets are valid as of December 2016.
The roadways and bridges datasets contained here were obtained directly from TxDOT through personal correspondence. An alternate resource that is more open is the Texas Natural Resources Information System (TNRIS) [2]. The railroads and low-water crossings were obtained through TNRIS.
References [1] TxDOT Bridges Coding Guide (download below) [2] TNRIS data downloads [https://tnris.org/data-download/#!/statewide]
The Digital Surficial Geologic-GIS Map of the Big Thicket National Preserve Area, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (btam_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (btam_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (btam_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (btam_surficial_geology_metadata.txt or btam_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Unpublished Digital Geologic-GIS Map of the Pedernales Falls Quadrangle, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (pefa_geology.gdb), a 10.1 ArcMap (.mxd) map document (pefa_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). Presently, a GRI Google Earth KMZ/KML product doesn't exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pefa_geology_metadata.txt or pefa_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Lyndon B. Johnson National Historical Park.
The Unpublished Digital Geologic-GIS Map of the Stonewall Quadrangle, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (stnw_geology.gdb), a 10.1 ArcMap (.mxd) map document (stnw_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (stnw_geology_metadata.txt or stnw_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Lyndon B. Johnson National Historical Park.
Programmatically generated Data Dictionary document detailing the Texas Cities service.
The PDF contains service metadata and a complete list of data fields.
For any questions or issues related to the document, please contact the data owner of the service identified in the PDF and Credits of this portal item.
Related Links
Texas Cities Service URL
Texas Cities Portal Item
The Digital Geomorphic-GIS Map of Big Thicket National Preserve and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (bitl_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bitl_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bitl_geomorphology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bitl_geomorphology_metadata.txt or bitl_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:500,000 and United States National Map Accuracy Standards features are within (horizontally) 254 meters or 833.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Texas Survey System (TXSS) Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain boundaries for Texas RRC Districts, Texas Bay Tracts, and Texas Land Survey Layer.
The Digital Geologic-GIS Map of the Johnson City Quadrangle, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (joci_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (joci_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (lyjo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (lyjo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (joci_geology_metadata_faq.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (joci_geology_metadata.txt or joci_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
A dataset of county polygons as used by TxDOT. These boundaries enable the classification of roadway inventory attributes, satisfy federal and state roadway reporting requirements, and serve as a base layer for TxDOT's cartographic products This data utilizes a detailed boundary along the Texas coast for depicting a realistic coastline.Security Level: Public
This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]
Vector polygon map data of property parcels from Bexar County, Texas containing 617, 851 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
The Watershed Boundary Dataset (WBD) in Texas was developed as a collaborative product by TWDB, USDA Natural Resources Conservation Service (NRCS) and USGS. The WBD is a seamless and consistent national Geographic Information System (GIS) database at a scale of 1:24,000, which has been extensively reviewed and matches to a minimum the USGS topographical 7.5 minute quadrangle map series. The traditional 8-digit hydrologic units (HUCs) have been further divided into smaller units called watersheds (10-digit HUCs) and sub-watersheds (12-digit HUCs). The watershed level is typically 40,000 to 250,000 acres, and the sub-watershed level is typically 10,000 to 40,000 acres with some as small as 3,000 acres. Federal Certification of the WBD for Texas was completed jointly by the NRCS and USGS in January 2009.This dataset, which has been developed to national standards (USGS and USDA/NRCS 2009), is intended to be managed in concert with the National Hydrography Dataset (NHD) as part of the Stewardship Program, supported by the U.S. Geological Survey with partner Federal, State and Local entities. Continuing development of the WBD in Texas will be completion of the 10 and 12-digit delineations of coastal watersheds. Some of the low lying coastal HUCs were not completed due to a lack of ultra high resolution elevation data necessary to determine the watershed boundaries.
The Digital Geologic-GIS Map of Alibates Flint Quarries National Monument and Lake Meredith National Recreational Area and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (aflm_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (aflm_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (alfl_lamr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (aflm_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (aflm_geology_metadata_faq.pdf). Please read the alfl_lamr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board and Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (aflm_geology_metadata.txt or aflm_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
City point locations are derived from boundary polygons of incorporated cities using the centroid of the polygon. Additional unincorporated points are also included. The data was created by the Transportation Planning and Programming Division of TxDOT in the Data Analysis, Mapping and Reporting Branch as a base layer for TxDOT's Cartographic products.Publish Date: June 2024Update Frequency: QuarterlySecurity Level: Public