Facebook
TwitterThis mapping tool provides a representation of the general watershed boundaries for stream systems declared fully appropriated by the State Water Board. The boundaries were created by Division of Water Rights staff by delineating FASS critical reaches and consolidating HUC 12 sub-watersheds to form FASS Watershed boundaries. As such, the boundaries are in most cases conservative with respect to the associated stream system. However, users should check neighboring FASS Watersheds to ensure the stream system of interest is not restricted by other FASS listings. For more information regarding the Declaration of Fully Appropriated Stream Systems, visit the Division of Water Rights’ Fully Appropriated Streams webpage. How to Use the Interactive Mapping Tool: If it is your first time viewing the map, you will need to click the “OK” box on the splash screen and agree to the disclaimer before continuing. Navigate to your point of interest by either using the search bar or by zooming in on the map. You may enter a stream name, street address, or watershed ID in the search bar. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. You may toggle the FAS Streams reference layer on and off to find representative critical reaches associated with the FASS Watershed layer. Please note that this layer is for general reference purposes only and ultimately the critical reach listed in Appendix A of Water Rights Order 98-08 and Appendix A together with any associated footnotes controls. Note: A separate FAS Watershed boundary layer was created for the Bay-Delta Watershed. The Bay-Delta Watershed layer should be toggled on to check if the area of interest is fully appropriated under State Water Board Decision 1594.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.
Facebook
Twitterhttps://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html
Data for maps and figures in "Global Potential for Harvesting Drinking Water from Air using Solar Energy" in Nature.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document outlines some of the methods used by Geoscience Australia (GA) to symbolise the Geology and Hydrogeology map of Timor-Leste. It is designed to be used as a knowledge-sharing and educational tool by water resource management and geology technicians from Timor-Leste government agencies.
Facebook
TwitterState Water Resources Control Board Division of Water Rights staff have developed a new interactive tool that graphically displays fully appropriated stream systems (FASS) throughout the state. The Division maintains a list of fully appropriated stream systems which has been updated over time, most recently in 1998 through Water Right Order 98-08. Exhibit A of Order 98-08 defines the critical reaches of each FASS listing, including the seasons in which water is unavailable for appropriation. The interactive GIS tool represents a digitized version and staff interpretation of Order 98-08 and Exhibit A. The tool contains separate layers for a) state and federal wild and scenic river stream systems to recognize the restrictions on appropriation of water in the respective State and Federal Wild and Scenic River Acts; and b) medium- and high-priority groundwater basins. How to Use the Interactive Map:After opening the web map, you will need to agree to the disclaimer and click the “OK” box on the splash screen before continuing.Navigate to your point of interest by either using the search tool or by zooming in on the map. To use the search tool, select the down arrow to search by address, stream name, watershed ID, or coordinates, then enter your search criteria. Note that the only searchable stream names are the streams declared fully appropriated and listed in Exhibit A. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. Users must keep the FASS Watersheds layer turned on in order to see pop-up boxes.When clicking on a location with overlapping watersheds, make sure to use the arrow to navigate through all pop-up boxes, as shown below. Note that as you click on different watersheds, the outline of the currently selected watershed will appear aqua-colored. You may also find it helpful to use the "Zoom to" link in each pop-up, which will zoom the map to the extent of the selected watershed.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! Explore key trends, growth drivers, and leading companies in this $15 billion industry projected to reach $28 billion by 2033. Learn about cloud-based solutions, regional market shares, and the future of geographic information systems.
Facebook
TwitterThe African Water Resource Database (AWRD) is a set of data and custom-designed tools, combined in a GIS analytical framework aimed at facilitating responsible inland aquatic resource management with a specific focus on inland fisheries and aquaculture. It provides a valuable instrument to promote food security. The AWRD data archive includes an extensive collection of datasets covering the African continent, including: surface waterbodies, watersheds, aquatic species, rivers, political boundaries, population density, soils, satellite imagery and many other physiographic and climatological data. To display and analyse the archival data, it also contains a large assortment of new custom applications and tools programmed to run under version 3 of the ArcView GIS software environment (ArcView 3.x).
Facebook
TwitterTerm project proposal introducing the topic, explaining the objective, and identifying the methods and data to be used over the course of the project.
Facebook
TwitterThe Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Air, Water, and Aquatic Environments (AWAE) research program is one of eight Science Program areas within the Rocky Mountain Research Station (RMRS). Our science develops core knowledge, methods, and technologies that enable effective watershed management in forests and grasslands, sustain biodiversity, and maintain healthy watershed conditions. We conduct basic and applied research on the effects of natural processes and human activities on watershed resources, including interactions between aquatic and terrestrial ecosystems. The knowledge we develop supports management, conservation, and restoration of terrestrial, riparian and aquatic ecosystems and provides for sustainable clean air and water quality in the Interior West. With capabilities in atmospheric sciences, soils, forest engineering, biogeochemistry, hydrology, plant physiology, aquatic ecology and limnology, conservation biology and fisheries, our scientists focus on two key research problems: Core watershed research quantifies the dynamics of hydrologic, geomorphic and biogeochemical processes in forests and rangelands at multiple scales and defines the biological processes and patterns that affect the distribution, resilience, and persistence of native aquatic, riparian and terrestrial species. Integrated, interdisciplinary research explores the effects of climate variability and climate change on forest, grassland and aquatic ecosystems. Resources in this dataset:Resource Title: Projects, Tools, and Data. File Name: Web Page, url: https://www.fs.fed.us/rm/boise/AWAE/projects.html Projects include Air Temperature Monitoring and Modeling, Biogeochemistry Lab in Colorado, Rangewide Bull Trout eDNA Project, Climate Shield Cold-Water Refuge Streams for Native Trout, Cutthroat trout-rainbow trout hybridization - data downloads and maps, Fire and Aquatic Ecosystems science, Fish and Cattle Grazing reports, Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, GRAIP_Lite - Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, IF3: Integrating Forests, Fish, and Fire, National forest climate change maps: Your guide to the future, National forest contributions to streamflow, The National Stream Internet network, people, data, GIS, analysis, techniques, NorWeST Stream Temperature Regional Database and Model, River Bathymetry Toolkit (RBT), Sediment Transport Data for Idaho, Nevada, Wyoming, Colorado, SnowEx, Stream Temperature Modeling and Monitoring, Spatial Statistical Modeling on Stream netowrks - tools and GIS downloads, Understanding Sculpin DNA - environmental DNA and morphological species differences, Understanding the diversity of Cottusin western North America, Valley Bottom Confinement GIS tools, Water Erosion Prediction Project (WEPP), Great Lakes WEPP Watershed Online GIS Interface, Western Division AFS - 2008 Bull Trout Symposium - Bull Trout and Climate Change, Western US Stream Flow Metric Dataset
Facebook
TwitterThe FREEWAT platform is an open-source GIS-integrated plugin developed for comprehensive water resource management and planning. Built on the QGIS platform, it includes multiple modules for addressing water management issues, particularly focusing on groundwater-related processes. Key features include tools for groundwater flow modeling (MODFLOW-2005), solute transport analysis, and density-dependent groundwater flow simulations. With specialized modules like SEAWAT for salinity and FARM for agricultural water management, the platform bridges advanced scientific modeling with practical resource management.FREEWAT leverages Python programming (via FloPy libraries) and a SpatiaLite database to seamlessly connect its components. Its pre-processing tools, such as akvaGIS and OAT, facilitate field data analysis and visualization, while post-processing tools enable users to interpret simulation results effectively. The integration of models for groundwater quality, crop yield predictions, and sensitivity analysis (via UCODE_2014) makes FREEWAT a versatile solution for managing interconnected hydrological and agricultural challenges. This modular design supports comprehensive simulations tailored to stakeholder priorities.With its user-friendly design and free availability, FREEWAT democratizes access to advanced hydrological tools for professionals and researchers. Its broad range of applications includes water quality monitoring, agricultural water management, and long-term resource planning. By integrating open-source simulation codes, the platform enables users to build robust, interconnected models to inform sustainable water management practices. FREEWAT's alignment with the MODFLOW USGS family ensures high compatibility and reliability for scientific and practical applications.
Facebook
TwitterDWMAPS is a GeoPlatform-based mapping application that provides access to data critical to source water protection. DWMAPS includes several search tools that, when used together with state and locally available mapping tools and data, can help users:
identify potential sources of contamination; find data to support source water assessments and plans to manage potential sources of contamination; evaluate accidental spills and releases, identifying where emergency response resources for accidental releases must be readily available; promote integration of drinking water protection activities with other environmental programs at the EPA, state, and local levels; and identify source water protection partnerships and watershed projects.
DWMAPS provides geographic data regarding the nation’s sources of drinking water and public water systems but obscures the precise locations of Public Water System intakes. DWMAPS is hosted on EPA’s GeoPlatform and integrated with Esri ArcGIS Online-- users do not need access to additional software, such as ArcGIS, to use DWMAPS.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Global GIS Mapping Tools Market is poised for significant expansion, projected to reach a substantial market size of $10 billion by 2025, with an anticipated Compound Annual Growth Rate (CAGR) of 12.5% through 2033. This robust growth trajectory is fueled by the increasing demand for advanced spatial analysis and visualization capabilities across a multitude of sectors. Key drivers include the escalating need for accurate geological exploration to identify and manage natural resources, the critical role of GIS in planning and executing complex water conservancy projects for sustainable water management, and the indispensable application of GIS in urban planning for efficient city development and infrastructure management. Furthermore, the burgeoning adoption of cloud-based and web-based GIS solutions is democratizing access to powerful mapping tools, enabling broader use by organizations of all sizes. The market is also benefiting from advancements in data processing, artificial intelligence integration, and the growing availability of open-source GIS platforms. Despite the optimistic outlook, certain restraints could temper the market's full potential. High initial investment costs for sophisticated GIS software and hardware, coupled with a shortage of skilled GIS professionals in certain regions, may pose challenges. However, the overwhelming benefits of enhanced decision-making, improved operational efficiency, and the ability to gain deep insights from spatial data are compelling organizations to overcome these hurdles. The competitive landscape is dynamic, featuring established players like Esri and Autodesk alongside innovative providers such as Mapbox and CARTO, all vying for market share by offering specialized features, user-friendly interfaces, and integrated solutions. The continuous evolution of GIS technology, driven by the integration of remote sensing data, big data analytics, and real-time information, will continue to shape the market's future. Here's a comprehensive report description on GIS Mapping Tools, incorporating your specified requirements:
This in-depth report provides a panoramic view of the global GIS Mapping Tools market, meticulously analyzing its landscape from the Historical Period (2019-2024) through to the Forecast Period (2025-2033), with 2025 serving as both the Base Year and the Estimated Year. The study period encompasses 2019-2033, offering a robust historical context and forward-looking projections. The market is valued in the millions of US dollars, with detailed segment-specific valuations and growth trajectories. The report is structured to deliver actionable intelligence to stakeholders, covering market concentration, key trends, regional dominance, product insights, and critical industry dynamics. It delves into the intricate interplay of companies such as Esri, Hexagon, Autodesk, CARTO, and Mapbox, alongside emerging players like Geoway and Shenzhen Edraw Software, across diverse applications including Geological Exploration, Water Conservancy Projects, and Urban Planning. The analysis also differentiates between Cloud Based and Web Based GIS solutions, providing a granular understanding of market segmentation.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Water Pipeline GIS market size reached USD 4.1 billion in 2024, demonstrating a robust growth trajectory. The market is expected to expand at a CAGR of 10.7% from 2025 to 2033, projecting a value of approximately USD 10.1 billion by 2033. This significant growth is underpinned by increasing investments in smart water infrastructure, rapid urbanization, and the pressing need for efficient water resource management. As per our analysis, technological advancements and the integration of GIS with IoT and AI are further propelling the adoption of GIS solutions across the water pipeline sector globally.
The surge in demand for Water Pipeline GIS solutions is primarily driven by the global push for sustainable water management and infrastructure modernization. Governments and municipal authorities are increasingly recognizing the importance of Geographic Information Systems (GIS) in optimizing water pipeline networks, reducing water loss, and improving service delivery. The proliferation of smart city initiatives, particularly in emerging economies, is catalyzing the deployment of GIS solutions for real-time monitoring and asset management. Moreover, the growing emphasis on reducing non-revenue water and complying with stringent regulatory mandates is compelling utilities to invest in advanced GIS technologies, thereby augmenting market growth.
Another critical growth factor for the Water Pipeline GIS market is the integration of GIS with advanced technologies such as artificial intelligence, machine learning, and the Internet of Things (IoT). These integrations enable predictive maintenance, accurate leak detection, and efficient network mapping, which are essential for minimizing downtime and operational costs. The ability of GIS platforms to provide spatial analysis and visualization tools empowers utilities to make data-driven decisions, enhancing the overall efficiency and reliability of water distribution networks. Additionally, the increasing adoption of cloud-based GIS solutions is making these technologies more accessible to small and medium-sized utilities, further expanding the market’s reach.
The rising awareness about the environmental impact of water wastage and the necessity for sustainable resource management are also contributing to the growth of the Water Pipeline GIS market. With climate change exacerbating water scarcity in several regions, utilities are under immense pressure to optimize their pipeline infrastructure. GIS technologies offer comprehensive solutions for hydraulic modeling, maintenance management, and network mapping, which are crucial for long-term sustainability. Furthermore, public-private partnerships and international funding for water infrastructure projects are creating new opportunities for market players, fostering innovation and technological advancement in the sector.
From a regional perspective, Asia Pacific is emerging as a dominant market for Water Pipeline GIS solutions, driven by rapid urbanization, substantial infrastructure investments, and supportive government policies. North America and Europe continue to hold significant market shares owing to their mature utility sectors and early adoption of advanced GIS technologies. Meanwhile, the Middle East & Africa and Latin America are witnessing accelerated growth, fueled by increasing awareness about water conservation and the need for efficient pipeline management. The regional dynamics of the market are shaped by varying levels of technological adoption, regulatory frameworks, and investment capabilities, which collectively influence the market’s growth trajectory.
The Water Pipeline GIS market is segmented by component into software, services, and hardware, each playing a pivotal role in the overall ecosystem. The software segment dominates the market, accounting for the largest share in 2024, as utilities increasingly rely on advanced GIS platforms for asset management, hydraulic modeling, and leak detection. These software solutions offer robust spatial analysis, real-time data visualization, and predictive analytics, enabling operators to enhance decision-making and optimize pipeline performance. The continuous evolution of GIS software, with features such as cloud integration and AI-powered analytics, is further driving its adoption across diverse end-user segments.
&l
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS mapping tools market! Explore market size, growth trends (8% CAGR), key players (Esri, QGIS, ArcGIS), and regional insights. Learn how cloud-based GIS and AI are transforming industries like urban planning and geological exploration. Get the latest data and forecasts for 2025-2033.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These is an examples to test Data Processing Kernel in CyberGIS-Jupyter for water. The 2_map_visualization folder is an example of an interactive map visualization which is the high-level visualization using PyViz tools as post-processing of environmental modeling. For this example, we used the following PyViz tools: - geopandas (https://geopandas.org/), cartopy (https://scitools.org.uk/cartopy/), geoviews (https://geoviews.org/), and holoviews (https://holoviews.org/)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions for enhanced accessibility and collaboration, the growing need for precise location data in various applications, and the increasing integration of GIS technology with other analytical tools. Applications such as geological exploration, water conservancy projects, and urban planning are major contributors to market growth, benefiting from the ability to visualize and analyze spatial data efficiently. While the market faces certain restraints, such as the high initial investment costs associated with some software solutions and the need for specialized expertise, these are being mitigated by the emergence of more affordable and user-friendly options, as well as increased training and educational resources. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Plan, Others) and type (Cloud Based, Web Based), with cloud-based solutions gaining significant traction due to their scalability and cost-effectiveness. Major players in the market, including Esri, Autodesk, Mapbox, and others, are continuously innovating and introducing new features to cater to the evolving needs of their customers. This competitive landscape ensures continuous improvement in software capabilities and affordability, further propelling market expansion. The geographical distribution of this market is broad, with North America and Europe currently holding significant market shares due to established infrastructure and high adoption rates. However, the Asia-Pacific region is exhibiting particularly rapid growth, driven by increasing urbanization, infrastructure development, and government initiatives promoting the use of GIS technologies. This regional shift indicates significant future growth potential in emerging markets. The forecast period of 2025-2033 suggests continued expansion, with a projected CAGR reflecting the sustained demand across different geographical regions and application areas. While precise figures are unavailable, based on industry trends and available data, a conservative estimate for the current market size would place it in the high hundreds of millions of dollars, with steady and significant growth anticipated.
Facebook
TwitterA dataset within the Harmonized Database of Western U.S. Water Rights (HarDWR). For a detailed description of the database, please see the meta-record v2.0. Changelog v2.0 - No changes v1.0 - Initial public release Description Borders of all Water Management Areas (WMAs) across the 11 western-most states of the coterminous United States are available filtered through a single source. The legal name for this set of boundaries varies state-by-state. The data is provided as two compressed shapefiles. One, stateWMAs, contains data for all 11 states. For 10 of those states, Arizona being the exception, the polygons represent the legal management boundaries used by those states to manage their surface and groundwater resources respectively. WMAs refer to the set of boundaries a particular state uses to manage its water resources. Each set of boundaries was collected from the states individually, and then merged into one spatial layer. The merging process included renaming some columns to enable merging with all other source layers, as well as removing columns deemed not required for followup analysis. The retained columns for each boundary are: basinNum - the state provided unique numerical ID; basinName - the state provided English name of the area, where applicable; state - the state name; and uniID - a unique identifier we created by concatenating the state name, and underscore, and the state numerical ID. Arizona is unique within this collection of states in that surface and groundwater resources are managed using two separate sets of boundaries. During our followup analysis (Grogan et al., in review) we decided to focus on one set of boundaries, those for surface water. This is due to the recommendation of our hydrologists that the surface water boundary set is a more realist representation of how water moves across the landscape, as a few of the groundwater boundaries are based on political and/or economic considerations. Therefore, the Arizona surface WMAs are included within stateWMAs. The Arizona groundwater WMAs are provided as a separate file, azGroundWMAs, as a companion to the first file for completeness and general reference. WMA spatial boundary data sources by state: Arizona: Arizona Surface Water Watersheds; Collected February, 2020; https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/surface-watershed/explore?location=34.158174%2C-111.970823%2C7.50 Arizona: Arizona Ground Water Basins; Collected February, 2020; https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/groundwater-basin-2/explore?location=34.158174%2C-111.970823%2C7.50 California: California CalWater 2.2.1; Collected February, 2020; https://www.mlml.calstate.edu/mpsl-mlml/data-center/data-entry-tools/data-tools/gis-shapefile-layers/ Colorado: Colorado Water District Boundaries; Collected February, 2020; https://www.colorado.gov/pacific/cdss/gis-data-category Idaho: Idaho Department of Water Resources (IDWR) Administrative Basins; Collected November, 2015; https://data-idwr.opendata.arcgis.com/datasets/fb0df7d688a04074bad92ca8ef74cc26_4/explore?location=45.018686%2C-113.862284%2C6.93 Montana: Collected June, 2019; Directly contacted Montana Department of Natural Resources and Conservation (DNRC) Office of Information Technology (OIT) Nevada: Nevada State Engineer Admin Basin Boundaries; Collected April, 2020 https://ndwr.maps.arcgis.com/apps/mapviewer/index.html?layers=1364d0c3a0284fa1bcd90f952b2b9f1c New Mexico: New Mexico Office of the State Engineer (OSE) Declared Groundwater Basins; Collected April, 2020 https://geospatialdata-ose.opendata.arcgis.com/datasets/ose-declared-groundwater-basins/explore?location=34.179783%2C-105.996542%2C7.51 Oregon: Oregon Water Resources Department (OWRD) Administrative Basins; Collected February, 2020; https://www.oregon.gov/OWRD/access_Data/Pages/Data.aspx Utah: Utah Adjudication Books; Collected April, 2020; https://opendata.gis.utah.gov/datasets/utahDNR::utah-adjudication-books/explore?location=39.497165%2C-111.587782%2C-1.00 Washington: Washington Water Resource Inventory Areas (WRIA); Collected June, 2017; https://ecology.wa.gov/Research-Data/Data-resources/Geographic-Information-Systems-GIS/Data Wyoming: Wyoming State Engineer's Office Board of Control Water Districts; Collected June, 2019; Directly contacted Wyoming State Engineer's Office
Facebook
TwitterThe Travel Time Tool was created by the MN DNR to use GIS analysis for calculation of hydraulic travel time from gridded surfaces and develop a downstream travel time raster for each cell in a watershed. This hydraulic travel time process, known as Time of Concentration, is a concept from the science of hydrology that measures watershed response to a precipitation event. The analysis uses watershed characteristics such as land-use, geology, channel shape, surface roughness, and topography to measure time of travel for water. Described as Travel Time, it calculates the elapsed time for a simulated drop of water to migrate from its source along a hydraulic path across different surfaces of the replicated watershed landscape, ultimately reaching the watershed outlet. The Travel Time Tool creates a raster whereas each cell is a measure of the length of time (in seconds) that it takes water to flow across it, and then accumulates the time (in hours) from the cell to the outlet of the watershed.
The Travel Time Tool creates an impedance raster from Manning's Equation that determines the velocity of water flowing across the cell as a measure of time (in feet per second). The Flow Length Tool uses the travel time Grid for the impedance factor and determines the downstream flow time from each cell to the outlet of the watershed.
The toolbox works with ArcMap 10.6.1 and newer and ArcGIS Pro. Latest version of the toc2.py script is Version 2.0.1 published 2025/11/07.
For step-by-step instructions on how to use the tool, please view MN DNR Travel Time Guidance.pdf
Facebook
TwitterThis mapping tool provides a representation of the general watershed boundaries for stream systems declared fully appropriated by the State Water Board. The boundaries were created by Division of Water Rights staff by delineating FASS critical reaches and consolidating HUC 12 sub-watersheds to form FASS Watershed boundaries. As such, the boundaries are in most cases conservative with respect to the associated stream system. However, users should check neighboring FASS Watersheds to ensure the stream system of interest is not restricted by other FASS listings. For more information regarding the Declaration of Fully Appropriated Stream Systems, visit the Division of Water Rights’ Fully Appropriated Streams webpage. How to Use the Interactive Mapping Tool: If it is your first time viewing the map, you will need to click the “OK” box on the splash screen and agree to the disclaimer before continuing. Navigate to your point of interest by either using the search bar or by zooming in on the map. You may enter a stream name, street address, or watershed ID in the search bar. Click on the map to identify the location of interest and one or more pop-up boxes may appear with information about the fully appropriated stream systems within the general watershed boundaries of the identified location. The information provided in the pop-up box may include: (a) stream name, (b) tributary, (c) season declared fully appropriated, (d) Board Decisions/Water Right Orders, and/or (e) court references/adjudications. You may toggle the FAS Streams reference layer on and off to find representative critical reaches associated with the FASS Watershed layer. Please note that this layer is for general reference purposes only and ultimately the critical reach listed in Appendix A of Water Rights Order 98-08 and Appendix A together with any associated footnotes controls. Note: A separate FAS Watershed boundary layer was created for the Bay-Delta Watershed. The Bay-Delta Watershed layer should be toggled on to check if the area of interest is fully appropriated under State Water Board Decision 1594.