Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterThrough the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
Facebook
TwitterProfessional Growth Management - Attract, grow, and retain top talent to serve our seniors and their families with passion, pride, and professionalism.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Phoenix Golf Features:
Five 18-hole championship courses
Three 9-hole courses
Conveniently located throughout the city
Overseeded annually for optimum playing conditions
Full-service golf shops and restaurants
Full amenity practice facilities
Equipment rentals
PGA/LPGA professional course managers
Facebook
TwitterOur Certification & Restoration Program currently licenses water and wastewater treatment plant operators as well as water distribution plants throughout Florida. Obtaining one of these licenses is a prerequisite to obtaining employment as a plant operator, excluding owner-operators.See Metadata for contact information.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.
Facebook
Twitter
Facebook
TwitterSeattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate data and geographic data from Madagascar for learning multi-criteria analysis in GIS courses.
Facebook
TwitterThe dataset contains locations and attributes of Golf Courses, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies.
Facebook
TwitterPolygon containing golf courses/facilities in Prince William County. Polygons contain all of the golf facilities including the greens, club houses. Updated as needed based on notifications of new or closed facilities. Includes public and private golf courses, country clubs and driving ranges. Mini golf is not included. Reviewed fully on an annual basis. Formally known as GOLFPWC_POLY. Renamed for clearer description 8/2019.
In the spring of 2017, the Commonwealth of Virginia, through the Virginia Geographic Information Network Division (herein referred to as VGIN) of the Virginia Information Technologies Agency (VITA) contracted with Fugro Geospatial, Inc. to provide aerial data acquisition, ground control, aerial triangulation and development of statewide ortho quality DEM and digital orthophotography data. The Virginia Base Mapping Program (VBMP) update project is divided into three collection phases: In 2017, Fugro flew the eastern third of Virginia at one foot resolution, with options for localities and other interested parties to upgrade resolution or purchase other optional products through the state contract. The middle third of Virginia will be flown in 2018 and the western third in 2019. Ortho products are 1-foot resolution statewide with upgrades to 6-inch resolution tiles and 3-inch resolution tiles in various regions within the project area. The Virginia Base Mapping project encompasses the entire land area of the Commonwealth of Virginia over 4 years. The State boundary is buffered by 1000'. Coastal areas of the State bordering the Atlantic Ocean or the Chesapeake Bay are buffered by 1000' or the extent of man-made features extending from shore. This metadata record describes the generation of new Digital Terrain Model (DTM) and contours generated at 2-foot intervals. All products are being delivered in the North American Datum of 1983 (1986), State Plane Virginia North. The vertical datum was the North American Vertical Datum of 1988 (NAVD88) using GEOID12B.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Facebook
TwitterAbstract: Community Engaged Learning (CEL) is a pedagogical approach that involves students, community partners, and instructors working together to analyze and address community-identified concerns through experiential learning. Implementing community-engagement in geography courses and, specifically, in GIS courses is not new. However, while students enrolled in CEL GIS courses critically reflect on social and spatial inequalities, GIS tools themselves are mostly applied in uncritical ways. Yet, CEL GIS courses can specifically help students understand GIS as a socially constructed technology which can not only empower but also disempower the community. This contribution presents the experiences from a community-engaged introductory GIS course, taught at a Predominantly White Institution (PWI) in Virginia (USA) in Spring ’24. It shows how the course helped students gain a conceptual understanding of what is GIS, how to use it, and valuable software skills, while also reflecting about their own privileges, how GIS can (dis)empower the community, and their own role as a GIS analyst. Ultimately, the paper shows how the course supported positive changes in the community, equity in education, reciprocity in university/community relationships, and student civic-mindedness.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daten zu den Aufgaben aus der VU Angewandte GIS -Grundlagen.
http://openscienceasap.org/education/courses/vu-angewandte-gis-grundlagen/ https://github.com/skasberger/vu-angewandte-gis-grundlagen
Facebook
TwitterCumberland County local golf courses.
Facebook
TwitterGolf Courses in the SPC region
Facebook
TwitterPoints feature class representing all parkland in Baltimore County, including County-owned and County-leased land classified as parks, school recreation centers, green/open spaces, and other recreation sites. Contains attributes describing amenities located at each site.
Facebook
TwitterThis layer serves as an inventory of golf courses within Stark County, Ohio. It is part of the Stark County Community Features umbrella of layers, which includes CommunityFeatures, LiveWorkLocate, and EmergencyResponseFacilities. These layers depict places of interest throughout the county, including Airfields and Helipads, Colleges and Universities, Corporate Headquarters, EMS Facilities, Event Venues, Fire Stations, Golf Courses, Hospitals and Health Clinics, Museums and Historic Landmarks, Parks and Recreation Areas, Places of Worship, Police Stations, Post Offices, Public Libraries, Retail Centers, Schools and Daycares, and Senior Citizen Centers. These "community features" were first inventoried and digitized by the Stark County Regional Planning Commission (RPC) in 2008. The initial inventory was a collaborative effort between RPC and each community within the county, who provided lists of their respective features. Since then, each layer is periodically updated by RPC and Stark County GIS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.