6 datasets found
  1. N

    Zoning GIS Data: Geodatabase

    • data.cityofnewyork.us
    • data.ny.gov
    • +1more
    application/rdfxml +5
    Updated Jan 29, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2013). Zoning GIS Data: Geodatabase [Dataset]. https://data.cityofnewyork.us/City-Government/Zoning-GIS-Data-Geodatabase/mm69-vrje
    Explore at:
    csv, application/rssxml, xml, application/rdfxml, json, tsvAvailable download formats
    Dataset updated
    Jan 29, 2013
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description

    This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.

    All previously released versions of this data are available at BYTES of the BIG APPLE - Archive.

  2. N

    Land Cover Raster Data (2017) – 6in Resolution

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated Dec 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Technology and Innovation (OTI) (2018). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns
    Explore at:
    xml, json, csv, tsv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Office of Technology and Innovation (OTI)
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks)

    For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub.

    To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  3. Green Roofs Footprints for New York City, Assembled from Available Data and...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    bin, csv, zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael L. Treglia; Michael L. Treglia; Timon McPhearson; Timon McPhearson; Eric W. Sanderson; Eric W. Sanderson; Greg Yetman; Greg Yetman; Emily Nobel Maxwell; Emily Nobel Maxwell (2020). Green Roofs Footprints for New York City, Assembled from Available Data and Remote Sensing [Dataset]. http://doi.org/10.5281/zenodo.1469674
    Explore at:
    csv, bin, zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael L. Treglia; Michael L. Treglia; Timon McPhearson; Timon McPhearson; Eric W. Sanderson; Eric W. Sanderson; Greg Yetman; Greg Yetman; Emily Nobel Maxwell; Emily Nobel Maxwell
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Summary:

    The files contained herein represent green roof footprints in NYC visible in 2016 high-resolution orthoimagery of NYC (described at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md). Previously documented green roofs were aggregated in 2016 from multiple data sources including from NYC Department of Parks and Recreation and the NYC Department of Environmental Protection, greenroofs.com, and greenhomenyc.org. Footprints of the green roof surfaces were manually digitized based on the 2016 imagery, and a sample of other roof types were digitized to create a set of training data for classification of the imagery. A Mahalanobis distance classifier was employed in Google Earth Engine, and results were manually corrected, removing non-green roofs that were classified and adjusting shape/outlines of the classified green roofs to remove significant errors based on visual inspection with imagery across multiple time points. Ultimately, these initial data represent an estimate of where green roofs existed as of the imagery used, in 2016.

    These data are associated with an existing GitHub Repository, https://github.com/tnc-ny-science/NYC_GreenRoofMapping, and as needed and appropriate pending future work, versioned updates will be released here.

    Terms of Use:

    The Nature Conservancy and co-authors of this work shall not be held liable for improper or incorrect use of the data described and/or contained herein. Any sale, distribution, loan, or offering for use of these digital data, in whole or in part, is prohibited without the approval of The Nature Conservancy and co-authors. The use of these data to produce other GIS products and services with the intent to sell for a profit is prohibited without the written consent of The Nature Conservancy and co-authors. All parties receiving these data must be informed of these restrictions. Authors of this work shall be acknowledged as data contributors to any reports or other products derived from these data.

    Associated Files:

    As of this release, the specific files included here are:

    • GreenRoofData2016_20180917.geojson is in the human-readable, GeoJSON format, in geographic coordinates (Lat/Long, WGS84; EPSG 4263).
    • GreenRoofData2016_20180917.gpkg is in the GeoPackage format, which is an Open Standard readable by most GIS software including Esri products (tested on ArcMap 10.3.1 and multiple versions of QGIS). This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.
    • GreenRoofData2016_20180917_Shapefile.zip is a zipped folder containing a Shapefile and associated files. Please note that some field names were truncated due to limitations of Shapefiles, but columns are in the same order as for other files and in the same order as listed below. This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.
    • GreenRoofData2016_20180917.csv is a comma-separated values file (CSV) with coordinates for centroids for the green roofs stored in the table itself. This allows for easily opening the data in a tool like spreadsheet software (e.g., Microsoft Excel) or a text editor.

    Column Information for the datasets:

    Some, but not all fields were joined to the green roof footprint data based on building footprint and tax lot data; those datasets are embedded as hyperlinks below.

    • fid - Unique identifier
    • bin - NYC Building ID Number based on overlap between green roof areas and a building footprint dataset for NYC from August, 2017. (Newer building footprint datasets do not have linkages to the tax lot identifier (bbl), thus this older dataset was used). The most current building footprint dataset should be available at: https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh. Associated metadata for fields from that dataset are available at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.md.
    • bbl - Boro Block and Lot number as a single string. This field is a tax lot identifier for NYC, which can be tied to the Digital Tax Map (http://gis.nyc.gov/taxmap/map.htm) and PLUTO/MapPLUTO (https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page). Metadata for fields pulled from PLUTO/MapPLUTO can be found in the PLUTO Data Dictionary found on the aforementioned page. All joins to this bbl were based on MapPLUTO version 18v1.
    • gr_area - Total area of the footprint of the green roof as per this data layer, in square feet, calculated using the projected coordinate system (EPSG 2263).
    • bldg_area - Total area of the footprint of the associated building, in square feet, calculated using the projected coordinate system (EPSG 2263).
    • prop_gr - Proportion of the building covered by green roof according to this layer (gr_area/bldg_area).
    • cnstrct_yr - Year the building was constructed, pulled from the Building Footprint data.
    • doitt_id - An identifier for the building assigned by the NYC Dept. of Information Technology and Telecommunications, pulled from the Building Footprint Data.
    • heightroof - Height of the roof of the associated building, pulled from the Building Footprint Data.
    • feat_code - Code describing the type of building, pulled from the Building Footprint Data.
    • groundelev - Lowest elevation at the building level, pulled from the Building Footprint Data.
    • qa - Flag indicating a positive QA/QC check (using multiple types of imagery); all data in this dataset should have 'Good'
    • notes - Any notes about the green roof taken during visual inspection of imagery; for example, it was noted if the green roof appeared to be missing in newer imagery, or if there were parts of the roof for which it was unclear whether there was green roof area or potted plants.
    • classified - Flag indicating whether the green roof was detected image classification. (1 for yes, 0 for no)
    • digitized - Flag indicating whether the green roof was digitized prior to image classification and used as training data. (1 for yes, 0 for no)
    • newlyadded - Flag indicating whether the green roof was detected solely by visual inspection after the image classification and added. (1 for yes, 0 for no)
    • original_source - Indication of what the original data source was, whether a specific website, agency such as NYC Dept. of Parks and Recreation (DPR), or NYC Dept. of Environmental Protection (DEP). Multiple sources are separated by a slash.
    • address - Address based on MapPLUTO, joined to the dataset based on bbl.
    • borough - Borough abbreviation pulled from MapPLUTO.
    • ownertype - Owner type field pulled from MapPLUTO.
    • zonedist1 - Zoning District 1 type pulled from MapPLUTO.
    • spdist1 - Special District 1 pulled from MapPLUTO.
    • bbl_fixed - Flag to indicate whether bbl was manually fixed. Since tax lot data may have changed slightly since the release of the building footprint data used in this work, a small percentage of bbl codes had to be manually updated based on overlay between the green roof footprint and the MapPLUTO data, when no join was feasible based on the bbl code from the building footprint data. (1 for yes, 0 for no)

    For GreenRoofData2016_20180917.csv there are two additional columns, representing the coordinates of centroids in geographic coordinates (Lat/Long, WGS84; EPSG 4263):

    • xcoord - Longitude in decimal degrees.
    • ycoord - Latitude in decimal degrees.

    Acknowledgements:

    This work was primarily supported through funding from the J.M. Kaplan Fund, awarded to the New York City Program of The Nature Conservancy, with additional support from the New York Community Trust, through New York City Audubon and the Green Roof Researchers Alliance.

  4. n

    NYS Schools

    • data.gis.ny.gov
    • opdgig.dos.ny.gov
    Updated Dec 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2022). NYS Schools [Dataset]. https://data.gis.ny.gov/maps/b6c624c740e4476689aa60fdc4aacb8f
    Explore at:
    Dataset updated
    Dec 30, 2022
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    Publication date: July 18, 2025. The NYS State Education Department schools web service is made up of 18 feature classes. The Schools K-12 feature class is a combination of 9 feature classes that have school aged children attending. The feature classes included in the Schools K-12 feature class include: Public K-12, Private K-12, Charter K-12, State Operated Schools, BOCES, Other Schools for Students with Disabilities, Kindergartens All Buildings, Non IMF Public and Private Institutions, and Schools for At Risk Youth. The Other feature classes include Proprietary, Approved Preschool Programs for SWD, Colleges, District Offices, Feeding Sites, and Libraries. Two polygon layers are included for School Districts and BOCES Districts. Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions.

  5. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  6. a

    Retaining Walls 2016

    • sweepinspectionstestxx-nycbuildings.hub.arcgis.com
    Updated Mar 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buildings GIS Portal (2017). Retaining Walls 2016 [Dataset]. https://sweepinspectionstestxx-nycbuildings.hub.arcgis.com/maps/NYCBuildings::retaining-walls-2016/about
    Explore at:
    Dataset updated
    Mar 23, 2017
    Dataset authored and provided by
    Buildings GIS Portal
    Area covered
    Earth
    Description

    NYC Department of Information Technology and Telecommunications (DoITT) GIS group maintains an accurate 'basemap' for NYC.The basemap provides the foundation upon which virtually all other geospatial data within New York government is registered. Ensuring its completeness and accuracy is fundamental to the Group’s core mission.

    Imagery and Data Specifications Digital planimetrics were derived using the imagery products delivered with the 2014 New York Statewide Flyover (see Introduction for specific flight dates), which includes raw imagery collected to support the generation of 0.5 Ft Ground Sample Distance (GSD) natural color imagery. The images were captured with 80% forward lap and side lap to support 1”=100’ mapping and meet the distortion free requirements within New York City. Planimetrics are developed to meet American Society for Photogrammetry and Remote Sensing (ASPRS) Class 1 (one) horizontal mapping standards and ASPRS vertical Class 2 (two) accuracy specifications. Planimetrics are delivered via an ESRI geodatabase in New York State Plane Coordinates, Long Island East Zone, NAD83, US foot.

    General Attribute Information

    The following attribute information applies to all feature classes. Additional attributes specific to a given feature class are listed within the details for that feature class.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of City Planning (DCP) (2013). Zoning GIS Data: Geodatabase [Dataset]. https://data.cityofnewyork.us/City-Government/Zoning-GIS-Data-Geodatabase/mm69-vrje

Zoning GIS Data: Geodatabase

Explore at:
csv, application/rssxml, xml, application/rdfxml, json, tsvAvailable download formats
Dataset updated
Jan 29, 2013
Dataset authored and provided by
Department of City Planning (DCP)
Description

This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.

All previously released versions of this data are available at BYTES of the BIG APPLE - Archive.

Search
Clear search
Close search
Google apps
Main menu