Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course.
Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material.
After completing this course you will be able to:
prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Sourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Demographics GIS Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual funding (2020-2021) from AmericaView allowed IowaView staff to survey Iowa public school K-12 superintendents and teachers to understand how GIS and remote sensing were being used in K-12 school districts and classrooms in Iowa. The surveys also provided a starting point for outreach and a way to assess if there is a need to improve knowledge and access to available resources such as Esri’s free educational licensing and educational materials as a way to build a foundation of GIS education throughout the state.
Register your school for free GIS!
This survey is intended to solicit feedback from the general public for developing free training sessions utilizing data and maps in the EBRGIS Portal.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, spatial analysis,
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is valued to increase USD 2.35 billion, at a CAGR of 15.7% from 2024 to 2029. Increased use of GIS for capacity planning will drive the GIS in telecom sector market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 28% growth during the forecast period.
By Product - Software segment was valued at USD 470.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 256.91 million
Market Future Opportunities: USD 2350.30 million
CAGR from 2024 to 2029: 15.7%
Market Summary
The market is experiencing significant growth as communication companies increasingly adopt Geographic Information Systems (GIS) for network planning and optimization. Core technologies, such as satellite imagery and location-based services, are driving this trend, enabling telecom providers to improve network performance and customer experience. One major application of GIS in the telecom sector is capacity planning, which allows companies to optimize their network infrastructure based on real-time data.
However, the integration of GIS with big data and other advanced technologies presents a communication gap between developers and end-users, requiring a focus on user-friendly interfaces and training programs. Additionally, regulatory compliance and data security remain significant challenges for the market. Despite these hurdles, the opportunities for innovation and improved operational efficiency make the market an exciting and evolving space.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the GIS In Telecom Sector Market Segmented ?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The global telecom sector's reliance on Geographic Information Systems (GIS) continues to expand, with the market for GIS in telecoms projected to grow significantly. According to recent industry reports, the market for GIS data visualization and spatial data infrastructure in telecoms has experienced a notable increase of 18.7% in the past year. Furthermore, the demand for advanced spatial analysis tools, such as building penetration analysis, geospatial asset management, and work order management systems, has risen by 21.3%. Telecom companies utilize GIS for network performance monitoring, data integration platforms, and network planning. For instance, GIS enables network design, radio frequency interference analysis, route optimization software, mobile network optimization, signal propagation modeling, and service area mapping.
Request Free Sample
The Software segment was valued at USD 470.60 billion in 2019 and showed a gradual increase during the forecast period.
Additionally, it plays a crucial role in infrastructure management, location-based services, emergency response planning, maintenance scheduling, and telecom network design. Moreover, the adoption of 3D GIS modeling, LIDAR data processing, and customer location mapping has gained traction, contributing to the market's expansion. The future outlook is promising, with industry experts anticipating a 25.6% increase in the use of GIS for telecom network capacity planning and telecom outage prediction. These trends underscore the continuous evolution of the market and its applications across various sectors.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 28% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How GIS In Telecom Sector Market Demand is Rising in APAC Request Free Sample
In China, the construction of smart cities in Qingdao, Hangzhou, and Xiamen, among others, is driving the demand for Geographic Information Systems (GIS) in various sectors. By 2025, China aims to build more smart cities, leading to significant growth opportunities for GIS companies. Esri Global Inc., a leading player
Ground response--GIS data, June 2010. Downloadable GIS data includes: One ESRI ArcGIS 9.3 geodatabase, consisting of a set of 4 feature classes; Metadata for each feature class, in HTML format (for ease of reading outside of GIS software); One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap; One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in the free ArcGIS Explorer (as well as ArcMap); README file
Free and reduced lunch data for each participating public school in Alaska. This data set includes the number of students receiving free lunches and reduced price lunches, and the percentage of the students enrolled in either of these programs. Students qualify for free and reduced meals under the National School Lunch Program.Where possible the data is mapped at the location of School that is associated with the program - however some data rows represent non-school entities. See source DEED data center https://education.alaska.gov/cnp/nslp for source dataSource: Alaska Department of Education & Early Development, School Nutrition Programs
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
These are the results of the survey "GIS Support on Campus", which was announced via email on May 13, 2014 to Gis4lib, HIGHERED-L, and MAPS-L. I have received requests to view the survey results; however, there was no statement about redistribution in the original survey, other than a presentation at the Esri Education GIS Conference 2014. To ensure confidentiality for survey respondents, these results have been anonimized or aggregated where needed. The PDF of my presentation slides from the 2014 Esri Education GIS Conference can be accessed at http://proceedings.esri.com/library/userconf/educ14/index.html. Search for "Bringing It All Together: Rethinking GIS Support on Campus". If you have specific questions, feel free to email me at megan.slemons@emory.edu.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
QGreenland is a free and open-source Greenland-focused GIS environment for data
analysis and viewing, powered by QGIS.
In this asynchronous session, you will use some of the free GIS tools from the Teach With GIS website, created and maintained by the Esri UK education team. All of these tools are free to use and accessible as websites from laptops, tablets and mobile devices. We recommend that you view them on a laptop or tablet if possible, to give you plenty of screen space to see every detail. They do not require any logins or subscriptions. We want you to experience using modern, online GIS tools from the perspective of a student before you begin to create your own tools, maps, and lessons. We have chosen a range of tools that let you experience GIS as a tool to examine physical and human geography, and to compare and contrast over space and time.
Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Map Data:
According to our latest research, the global GIS online moisture sensor market size reached USD 1.12 billion in 2024, reflecting robust adoption across key sectors such as agriculture, environmental monitoring, and industrial process control. The market is projected to grow at a CAGR of 8.7% from 2025 to 2033, reaching an estimated value of USD 2.43 billion by 2033. This impressive growth is primarily driven by the increasing demand for precision agriculture, advancements in sensor technologies, and the growing need for real-time environmental data to support sustainable resource management.
One of the primary growth factors fueling the GIS online moisture sensor market is the surging adoption of precision agriculture techniques worldwide. Farmers and agribusinesses are increasingly leveraging advanced moisture sensing technologies integrated with GIS platforms to monitor soil conditions, optimize irrigation schedules, and enhance crop yields. The ability to access real-time moisture data remotely has transformed traditional farming practices, allowing for data-driven decisions that conserve water and reduce operational costs. This trend is further supported by government initiatives and subsidies promoting smart farming solutions, particularly in regions facing water scarcity or climate variability. As a result, the integration of GIS and online moisture sensors has become a cornerstone in the modernization of agricultural operations, driving sustained market expansion.
Another significant driver for the GIS online moisture sensor market is the escalating focus on environmental monitoring and industrial process control. Industries such as construction, mining, and manufacturing are increasingly required to adhere to stringent environmental regulations, necessitating continuous monitoring of moisture levels in soil, air, and materials. GIS-enabled online moisture sensors provide accurate, location-based data that supports compliance, risk management, and process optimization. In addition, the proliferation of smart city initiatives and the expansion of IoT infrastructure have amplified the deployment of these sensors in urban planning, flood prediction, and infrastructure maintenance. The convergence of GIS and online sensor technologies enables seamless data visualization and analysis, making them indispensable tools for both public and private sector stakeholders.
Technological advancements in sensor design and connectivity are also playing a pivotal role in the market's growth trajectory. Innovations such as wireless and cloud-connected moisture sensors, improved accuracy through advanced materials, and miniaturization have broadened the scope of applications. These advancements have resulted in more cost-effective, durable, and easy-to-deploy solutions, fostering adoption across diverse end-user segments. Furthermore, the integration of AI and machine learning algorithms with GIS platforms is enabling predictive analytics and automated decision-making, further enhancing the value proposition of online moisture sensors. As the demand for actionable insights and real-time monitoring continues to rise, the GIS online moisture sensor market is poised for sustained innovation and expansion.
Regionally, North America and Europe are leading the market, driven by early adoption of precision agriculture, robust regulatory frameworks, and substantial investments in R&D. Asia Pacific, however, is emerging as the fastest-growing region, propelled by rapid urbanization, increasing awareness of sustainable agricultural practices, and government support for smart farming initiatives. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as industries in these regions recognize the benefits of GIS-enabled moisture monitoring for resource optimization and environmental management. Overall, the global market is characterized by dynamic regional trends, with each geography contributing uniquely to the market's evolution.
This is a feature class outlining Palm Oil Plantations in Ucayali Province in Peru. A small team of faculty and student researchers hand digitized polygons delineating palm oil plantations in Ucayali, Peru in support of SERVIR Amazonia goals. GIS experts used high-resolution (< 1 m) optical observations to identify areas of oil palm presence across different conditions (young vs. mature, industrial vs. small-scale). This hand-digitized oil palm presence map will serve as a calibration / validation dataset for an automated classification model using remote sensing observations. This task presented numerous challenges, namely the availability of cloud-free, high resolution imagery. Polygons were digitized from numerous imagery datasets including mosaiced basemap imagery from Maxar and Planet Scope. Whenever the high resolution Maxar imagery was available, it was used. In some cases, we were unable to procure imagery in the time frame. We provide a training document describing our methodology and process in QGIS, an open source geospatial software package so other researchers could repeat our methods at later times or different geographic extents. The major variables in our study were the spatial extents of the palm oil plantations, whether they were open or closed canopy, and the imagery data source
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper
Roughly 0.6438 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.0602 and 0.0169 (in million kms), corressponding to 9.344% and 2.6252% respectively of the total road length in the dataset region. 0.5667 million km or 88.0308% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0022 million km of information (corressponding to 0.3924% of total missing information on road surface)
It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.
This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.
AI features:
pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."
pred_label: Binary label associated with pred_class
(0 = paved, 1 = unpaved).
osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."
combined_surface_osm_priority: Surface classification combining pred_label
and surface
(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."
combined_surface_DL_priority: Surface classification combining pred_label
and surface
(OSM) while prioritizing DL prediction pred_label
, classified as "paved" or "unpaved."
n_of_predictions_used: Number of predictions used for the feature length estimation.
predicted_length: Predicted length based on the DL model’s estimations, in meters.
DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.
OSM features may have these attributes(Learn what tags mean here):
name: Name of the feature, if available in OSM.
name:en: Name of the feature in English, if available in OSM.
name:* (in local language): Name of the feature in the local official language, where available.
highway: Road classification based on OSM tags (e.g., residential, motorway, footway).
surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).
smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).
width: Width of the road, where available.
lanes: Number of lanes on the road.
oneway: Indicates if the road is one-way (yes or no).
bridge: Specifies if the feature is a bridge (yes or no).
layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).
source: Source of the data, indicating the origin or authority of specific attributes.
Urban classification features may have these attributes:
continent: The continent where the data point is located (e.g., Europe, Asia).
country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).
urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)
urban_area: Name of the urban area or city where the data point is located.
osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.
osm_type: Type of OSM element (e.g., node, way, relation).
The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.
This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.
We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.