32 datasets found
  1. All Chapters Tutorial Data

    • hub.arcgis.com
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
    Explore at:
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

  2. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  3. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  4. Training: 3. GIS Concepts, Applications, and Software

    • sudan-uneplive.hub.arcgis.com
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2020). Training: 3. GIS Concepts, Applications, and Software [Dataset]. https://sudan-uneplive.hub.arcgis.com/documents/642a61631daf44e0b91991fbd774e3e8
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Description

    This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.

  5. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  6. a

    USNG Map Book Template for ArcGIS Pro

    • hub.arcgis.com
    • visionzero.geohub.lacity.org
    • +1more
    Updated May 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). USNG Map Book Template for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f93ebd6933cb4679a62ce4f71a2a9615
    Explore at:
    Dataset updated
    May 25, 2018
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!

  7. a

    07.0 Data QC with ArcGIS: Visual Review

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 07.0 Data QC with ArcGIS: Visual Review [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/documents/IowaDOT::07-0-data-qc-with-arcgis-visual-review
    Explore at:
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How do you ensure your data is free of errors? While you may already leverage ArcGIS Data Reviewer for its automated validation capabilities, you might ocassionally encounter problems with certain challenging subsets of features. For example, think about a situation in which you expected an automated data check to return a certain error but it did not. You tried configuring the check over and over again, but did not figure out a method of automatically detecting the error.Visual review can help. Manually reviewing your data provides a way to find errors that are difficult to detect using automated methods, such as features that are missing, misplaced, miscoded, or redundant.The following graphic shows the topics that will be covered throughout the course. You will learn the associated workflows that take advantage of ArcGIS Data Reviewer functionality.After completing this course, you will be able to:Determine situations in which visual review is appropriate.Analyze a statistically significant sample.Create a QC grid and perform a systematic visual review.Indicate missing, misplaced, miscoded, or redundant features.Recognize how to find changes between versions.

  8. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  9. 04.5 Using ArcGIS for Land Records Management

    • training-iowadot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 04.5 Using ArcGIS for Land Records Management [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/b432b3b66e954db9bc4c855f0f678d2b
    Explore at:
    Dataset updated
    Feb 18, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.

  10. b

    Public Training

    • gisdata.brla.gov
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    East Baton Rouge GIS Map Portal (2020). Public Training [Dataset]. https://gisdata.brla.gov/feedback/surveys/cd1f065e745d4e27bca7111a4ffb7b26
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset authored and provided by
    East Baton Rouge GIS Map Portal
    Area covered
    Description

    This survey is intended to solicit feedback from the general public for developing free training sessions utilizing data and maps in the EBRGIS Portal.

  11. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, Global
    Description

    Snapshot img

    GIS In Utility Industry Market Size 2025-2029

    The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.

    The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.

    What will be the Size of the GIS In Utility Industry Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure. Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.

    How is this GIS In Utility Industry Industry segmented?

    The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma

  12. m

    GeoStoryTelling

    • data.mendeley.com
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Gonzalez Canche (2023). GeoStoryTelling [Dataset]. http://doi.org/10.17632/nh2c5t3vf9.1
    Explore at:
    Dataset updated
    Apr 21, 2023
    Authors
    Manuel Gonzalez Canche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.

  13. c

    ArcGIS to OpenStreetMap

    • cacgeoportal.com
    Updated Jun 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). ArcGIS to OpenStreetMap [Dataset]. https://www.cacgeoportal.com/datasets/arcgis-content::arcgis-to-openstreetmap
    Explore at:
    Dataset updated
    Jun 8, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This story map describes and demonstrates how OpenStreetMap (OSM) data is accessible in ArcGIS, and how ArcGIS users can help to improve OSM with their GIS data. Learn the various ways in which you can access OSM data for your work, and how you can share data to be used in OSM.OpenStreetMap is a free, editable map of the world built by a community of mappers that contribute and maintain geospatial data about our world. It includes a worldwide database that is maintained by over 8 million registered users, with millions of map changes each day. Esri provides access to OSM data to ArcGIS users in multiple ways, including hosted vector tiles, feature layers, and scene layers.This story map shows several examples of how you can access OSM data in your work, and how ArcGIS organizations (e.g. cities, counties, states, nations) can share data they maintain (e.g. buildings, addresses, roads) to be used in OSM. The story illustrates the open data pipeline between ArcGIS and OSM, where open data created and published with ArcGIS can flow to OpenStreetMap and then OSM data flows back again to ArcGIS.

  14. Data package for nismod/snail tutorials v0.1

    • zenodo.org
    zip
    Updated Mar 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell (2021). Data package for nismod/snail tutorials v0.1 [Dataset]. http://doi.org/10.5281/zenodo.4646839
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data package contains extracts from open datasets to support
    the tutorials available at https://github.com/nismod/snail/

    This version of the data goes with v0.1 of the tutorials:

    https://github.com/nismod/snail/releases/tag/v0.1


    WRI Aqueduct Flood Hazard Maps

    `flood_layer` contains data extracted and derived from the Aqueduct
    Flood Hazard Maps (version 2, updated October 20, 2020).

    See https://www.wri.org/resources/data-sets/aqueduct-floods-hazard-maps

    These data are shared under the CC-BY Creative Commons Attribution
    License 4.0 - https://creativecommons.org/licenses/by/4.0/

    Citation: Ward, P.J., H.C. Winsemius, S. Kuzma,
    M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et
    al. 2020. “Aqueduct Floods Methodology.” Technical Note.
    Washington, D.C.: World Resources Institute. Available online at:
    www.wri.org/publication/aqueduct-floods-methodology.


    Ghana - Subnational Administrative Boundaries

    `gha_admbnda_gss_20210308_shp` contains data from Ghana Statistical
    Services (GSS) contributed to Humanitarian Data Exchange by the OCHA
    Regional Office for West and Central Africa, updated 11 March 2021.

    See https://data.humdata.org/m/dataset/ghana-administrative-boundaries

    These data are shared under the Creative Commons Attribution for
    Intergovernmental Organisations (CC BY-IGO) - https://creativecommons.org/licenses/by/3.0/igo/


    Ghana OpenStreetMap Extract

    `ghana-latest-free.shp` contains data extracted from OpenStreetMap
    and downloaded from GeoFabrik.

    The files in this archive have been created from OpenStreetMap data
    and are licensed under the Open Database 1.0 License. See
    www.openstreetmap.org for details about the project.

    This file contains OpenStreetMap data as of 2021-03-22T21:21:57Z.

    More recent updates will be made available daily here:

    http://download.geofabrik.de/africa/ghana-latest-free.shp.zip

    A documentation of the layers in this shape file is available here:

    http://download.geofabrik.de/osm-data-in-gis-formats-free.pdf


    Ghana Road Network

    `GHA_OSM_roads.gpkg` contains data derived from the OpenStreetMap
    extract above, and can be reproduced by running through nismod/snail
    tutorial 01.

    These data are shared under the same Open Database 1.0 License. See
    www.openstreetmap.org for details about the project.


    Natural Earth Country Boundaries

    `ne_10m_admin_0_countries` contains Natural Earth 1:10m Cultural Vectors,
    Admin ) - Countries version 4.1.0

    See https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/

    These data are declared to be in the public domain, and may be shared
    and modified without restriction - https://www.naturalearthdata.com/about/terms-of-use/


    QGIS project

    `overview.qgz` is a QGIS project intended to help preview and explore
    the data in this package.

    It is shared under the CC-BY Creative Commons Attribution
    License 4.0 - https://creativecommons.org/licenses/by/4.0/

    Please cite it as part of this data package, by Tom Russell (2021).


    Results

    `results` contains the results of analysis that can be reproduced
    by running through all the nismod/snail tutorials.

    These are derived from all the data above, shared under the
    combined terms of Open Database 1.0 License and CC-BY licenses as
    applicable to derived, extracted and modified data.

  15. a

    08. Learn ArcGIS

    • hub.arcgis.com
    Updated Aug 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Teachers Teaching Teachers GIS (2018). 08. Learn ArcGIS [Dataset]. https://hub.arcgis.com/documents/EsriT3G::08-learn-arcgis
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset authored and provided by
    Teachers Teaching Teachers GIS
    Area covered
    Description

    Scenario-based activities using specific tools, built by Esri and users. Explore the lessons, then filter for desired tools and level. At the bottom of the front page, one can request for free a 60-day login to the Learn Org, to use with their lessons ... but membership in the Learn Org is for adults only, as the process requires the user to provide first name, last name, and email address. K12 students should ONLY use their assigned school Org login in order to prevent sharing personally identifiable information. K12 students should therefore only be exploring lessons that engage software in the School Bundle -- ArcGIS Online (includes Survey123, Collector, Dashboard, Story Maps, Web AppBuilder), Community Analyst, or ArcGIS Pro or ArcMap.Go to the Learn site at http://learn.arcgis.com.

  16. a

    Microsoft Building Footprints

    • gis-bradd-ky.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Mar 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barren River Area Development District (2022). Microsoft Building Footprints [Dataset]. https://gis-bradd-ky.opendata.arcgis.com/datasets/microsoft-building-footprints
    Explore at:
    Dataset updated
    Mar 10, 2022
    Dataset authored and provided by
    Barren River Area Development District
    Area covered
    Description

    Microsoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.

  17. a

    Microsoft Building Footprints for Kentucky - Features

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opengisdata.ky.gov
    • +3more
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2025). Microsoft Building Footprints for Kentucky - Features [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/kygeonet::microsoft-building-footprints-for-kentucky-features
    Explore at:
    Dataset updated
    Apr 7, 2025
    Dataset authored and provided by
    KyGovMaps
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    From: MS BuildingsMicrosoft recently released a free set of deep learning generated building footprints covering the United States of America. In support of this great work and to make these building footprints available to the ArcGIS community, Esri has consolidated the buildings into a single layer and shared them in ArcGIS Online. The footprints can be used for visualization using vector tile format or as hosted feature layer to do analysis. Learn more about the Microsoft Project at the Announcement Blog or the raw data is available at Github.

  18. Pre-processed (in Detectron2 and YOLO format) planetary images and boulder...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nils Prieur; Nils Prieur; Brian Amaro; Brian Amaro; Emiliano Gonzalez; Emiliano Gonzalez; Mathieu Lapotre; Mathieu Lapotre (2024). Pre-processed (in Detectron2 and YOLO format) planetary images and boulder labels collected during the BOULDERING Marie Skłodowska-Curie Global fellowship [Dataset]. http://doi.org/10.5281/zenodo.14250874
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 30, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nils Prieur; Nils Prieur; Brian Amaro; Brian Amaro; Emiliano Gonzalez; Emiliano Gonzalez; Mathieu Lapotre; Mathieu Lapotre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 2024
    Description

    This database contains 4976 planetary images of boulder fields located on Earth, Mars and Moon. The data was collected during the BOULDERING Marie Skłodowska-Curie Global fellowship between October 2021 and 2024. The data was already splitted into train, validation and test datasets, but feel free to re-organize the labels at your convenience.

    For each image, all of the boulder outlines within the image were carefully mapped in QGIS. More information about the labelling procedure can be found in the following manuscript (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE008013). This dataset differs from the previous dataset included along with the manuscript https://zenodo.org/records/8171052, as it contains more mapped images, especially of boulder populations around young impact structures on the Moon (cold spots). In addition, the boulder outlines were also pre-processed so that it can be ingested directly in YOLOv8.

    A description of what is what is given in the README.txt file (in addition in how to load the custom datasets in Detectron2 and YOLO). Most of the other files are mostly self-explanatory. Please see previous dataset or manuscript for more information. If you want to have more information about specific lunar and martian planetary images, the IDs of the images are still available in the name of the file. Use this ID to find more information (e.g., M121118602_00875_image.png, ID M121118602 ca be used on https://pilot.wr.usgs.gov/). I will also upload the raw data from which this pre-processed dataset was generated (see https://zenodo.org/records/14250970).

    Thanks to this database, you can easily train a Detectron2 Mask R-CNN or YOLO instance segmentation models to automatically detect boulders.

    How to cite:

    Please refer to the "how to cite" section of the readme file of https://github.com/astroNils/YOLOv8-BeyondEarth.

    Structure:

    .
    └── boulder2024/
     ├── jupyter-notebooks/
     │ └── REGISTERING_BOULDER_DATASET_IN_DETECTRON2.ipynb
     ├── test/
     │ └── images/
     │  ├── 

    detectron2_inst_seg_boulder_dataset.json

    is a json file containing the masks as expected by Detectron2 (see https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html for more information on the format). In order to use this custom dataset, you need to register the dataset before using it in the training. There is an example how to do that in the jupyter-notebooks folder. You need to have detectron2, and all of its depedencies installed.

    yolo_inst_seg_boulder_dataset.yaml

    can be used as it is, however you need to update the paths in the .yaml file, to the test, train and validation folders. More information about the YOLO format can be found here (https://docs.ultralytics.com/datasets/segment/).

  19. General Mills, Inc. (GIS): Is It a Cereally Good Investment? (Forecast)

    • kappasignal.com
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). General Mills, Inc. (GIS): Is It a Cereally Good Investment? (Forecast) [Dataset]. https://www.kappasignal.com/2024/02/general-mills-inc-gis-is-it-cereally.html
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    General Mills, Inc. (GIS): Is It a Cereally Good Investment?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. o

    10m Annual Land Use Land Cover (9-class)

    • registry.opendata.aws
    • collections.sentinel-hub.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Impact Observatory (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://registry.opendata.aws/io-lulc/
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    <a href="https://www.impactobservatory.com/">Impact Observatory</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
Organization logo

All Chapters Tutorial Data

Explore at:
Dataset updated
Jun 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Tutorials
Description

Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

Search
Clear search
Close search
Google apps
Main menu