Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agencyâ s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. SMA_Withdrawals: The Surface Management Agency (SMA) Withdrawals Geographic Information System (GIS) dataset includes all of the known withdrawals which transfer surface jurisdictional responsibilities to federal agencies. The SMA Withdrawls feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. These data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. SPP_WithdrawalAreas: The Special Public Purpose (SPP) Withdrawals Geographic Information System (GIS) dataset includes all of the known SPP Withdrawal Areas, which limit use or access to Federal lands (e.g. Wilderness, National Monument). The Special Public Purpose Withdrawal Areas feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SPP Withdrawal Area is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SPP Withdrawals include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. These data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed under the guidance of the U.S. National Grid Institute due to a mission request from theFL-TF4 US&R Team operating in Louisiana after HurricaneLaura, August 2020, to support future similar Search-and-Rescue missions. The original population data are from WorldPop.org, converted to a 1-km USNG format courtesy of the USNGCenter.org, and mapped and hosted at the Florida Resources and Environmental Analysis Center (FREAC), Florida State University (FSU). Web-based map viewers are available as a courtesy of CalTopo, GISsurfer, and Esri.More Details: https://usng-gis.org/docs/TheSARTopoProject.pdf
Facebook
TwitterThis is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes all emissions associated with wells owned or operated by a single company in a specific hydrocarbon producing basin (as defined by the geologic provinces published by the American Association of Petroleum Geologists). This layer is limited to the contiguous United States.
Facebook
TwitterFiltered (2% slope and less) direct normal solar resource data for the Southwest United States
This data provides filtered solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude, or about 10 km in size. Exclusions: Contiguous Area 1km squared; US Census Urban Areas; MRLC Multi Resolution Land Characteristics Consortium http://www.mrlc.gov/ (Urban Areas, Water Features, Wetlands); Argone National Lab ACEC Lands (Areas of Critical Environmental Concern) Federally Protected lands (FS - IRA (Inventoried Roadless Areas, FS - National Monument, FS - National Scenic Area, FS - Wilderness, FS - Wilderness Study Area, BLM - Wilderness, BLM - National Recreation Area, BLM - Forest Reserve, BLM - Wilderness Study Area, BLM - National Monument, BLM - National Conservation Area, FWS - National Wildlife Refuge, FWS - Waterfowl Production Area, FWS - Wildlife Management Area, FWS - Wilderness, FWS - Wilderness Study Area, FWS - Fish Hatchery, NPS - National Battlefield, NPS - National Battlefield Park, NPS - National Capital Park, NPS - National Historic Park, NPS - National Historic Site, NPS - National Lakeshore, NPS - National Mall, NPS - National Memorial, NPS - National Military Park, NPS - National Monument, NPS - National Park, NPS - National Parkway, NPS - National Preserve, NPS - National Recreation Area, NPS - National Reserve, NPS - National River, NPS - National Seashore, NPS - Wilderness, NPS - Wilderness Study Area, NPS - National Wild and Scenic River).
DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Facebook
TwitterThis data provides monthly average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude, or about 10 km in size. This data was developed using the State University of New York/Albany satellite radiation model. This model was developed by Dr. Richard Perez and collaborators at the National Renewable Energy Laboratory and other universities for the U.S. Department of Energy. Specific information about this model can be found in Perez, et al. (2002). This model uses hourly radiance images from geostationary weather satellites, daily snow cover data, and monthly averages of atmospheric water vapor, trace gases, and the amount of aerosols in the atmosphere to calculate the hourly total insolation (sun and sky) falling on a horizontal surface. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not available at a 10 km resolution. As a result, it is believed that the modeled values are accurate to approximately 9% of a true measured value within the grid cell. Due to terrain effects and other microclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.
DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Facebook
TwitterAbstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.
Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location.
Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day.
OtherCitation Details:
George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.
Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.
Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401.
DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Facebook
TwitterEstimate the potential for producing hydrogen from key renewable resources (onshore wind, solar photovoltaic, and biomass) by county for the United States. This study was conducted to estimate the potential for producing hydrogen from key renewable resources (onshore wind, solar photovoltaic, and biomass) by county in the United States and to create maps that allow the reader to easily visualize the results. To accomplish this objective, the authors analyzed renewable resource data both statistically and graphically utilizing a state-of-the-art Geographic Information System (GIS), a computer-based information system used to create and visualize geographic information.
Land-use and environmental exclusions were applied to represent the most viable resources across the country. While wind, solar, and biomass are considered major renewable resources, other renewable energy resources could also be used for hydrogen production, thus contributing to hydrogen development locally and regionally. These additional resources include offshore wind, concentrating solar power, geothermal, hydropower, photoelectrochemical, and photobiological resources.
This study found that approximately 1 billion metric tons of hydrogen could be produced annually from wind, solar, and biomass resources in the United States. The greatest potential for producing hydrogen from these key renewable resources is in the Great Plains region. In addition, this research suggests that renewable hydrogen has the potential to displace gasoline consumption in most states if and when a number of technical and scientific barriers can be overcome.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Facebook
TwitterThe Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.
The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.
Facebook
TwitterThis feature layer has been archived. It will no longer be updated or maintained. Last Data Update: 07/06/2024Cellular Towers in the United States This feature layer depicts cellular towers in the United States. It is sourced from Federal Communications Commission data. According to the Federal Communications Commission (FCC), "Primary antennas for transmitting wireless telephone service, including cellular and Personal Communications Service (PCS), are usually located outdoors on towers, water tanks and other elevated structures like rooftops and sides of buildings. The combination of antenna towers and associated electronic equipment is referred to as a 'cellular or PCS cell site' or 'base station.' Cellular or PCS cell site towers are typically 50-200 feet high." United States Cellular Operating Company LLC Data currency: 07/06/2024Data Source: Federal Communication CommissionData modification: NoneFor more information: Tower and Antenna SitingFor feedback, please contact: ArcGIScomNationalMaps@esri.com
Facebook
TwitterThis project provides files used in the uncertainty analysis of polygon areas resulting from overlaying/clipping/erasing GIS operations that map the conversion from mid-21st century flood (and sprinkler irrigation) to sprinkler irrigation (center-pivot and other sprinkler), and other land types (fallow, crop, and flood remaining flood) in Montana, by 2019.
This project is part of a larger effort that maps the conversion from mid-20th century flood (and sprinkler irrigation) to sprinkler irrigation (center-pivot and other sprinkler), and other land types (fallow, crop, and flood remaining flood) in Montana, by 2019. This file contains results of mapping the conversion from mid-20th century flood (and sprinkler irrigation) to sprinkler irrigation (center-pivot and other sprinkler), and other land types (to cropland—C, hayland--H, fallow –FA, and sprinkler remaining sprinkler) in Montana, by 2019. As part of the Montana Water Center’s effort to better understand the effects of increased irrigation efficiency in Montana (Lonsdale et al. 2020), historic conversion from flood to sprinkler irrigation was analyzed using available agricultural statistics, maps from state and federal sources, and an independent Geographic Information Systems (GIS) analysis. This project presents the GIS analysis and maps the amount and spatial distribution of conversion from flood to sprinkler irrigation, between the mid-20th century and 2019. Historic mid-20th century irrigation was mapped in detail from 1943-1965 by the State Engineer’s Office and from 1966-1971 by the Montana Water Resources Board—the predecessor of the Montana Department of Natural Resources and Conservation (DNRC). A scanned and georeferenced version of the Water Resources Surveys (WRS) was compared with maps of contemporary irrigated land (Montana Department of Revenue’s 2019 Final Land Unit Classification—DORFLU2019) to estimate the area of land converted from flood to sprinkler irrigation. Prior to GIS analysis, both datasets were edited to ensure valid comparison between irrigated field mapping conducted at the two points in time. To estimate the amount of conversion from flood to sprinkler irrigation, and other uses, the GIS layers (WRS flood and sprinkler 1946-1971 and DOR-FLU 2019) were overlain in ArcGIS; then the clipping erase functions were used to select the WRS flood and sprinkler parcels that were shown as sprinkler irrigated in 2019. Additional conversion classes were also mapped that represent the changes from WRS flood and sprinkler to cropland, hayland and fallow, and WRS sprinkler remaining sprinkler.
There are several sources of uncertainty in the conversion mapping results. The first is that the analysis only accounts for changes that occurred between the WRS 1946-71 and DORFLU2019; it is possible that additional flood irrigation developed between the two points in time may have also been converted to sprinkler. Lacking statewide mapping of irrigation for intervening years, it was not possible to evaluate this. In addition, WRS were not available for several counties, and the amount of conversion could not be estimated. Although several of the counties are in eastern Montana and have little irrigation, Beaverhead and Yellowstone Counties have significant irrigation and could have significant conversion--therefore the statewide estimate of conversion should be considered a minimum value.
Another source of uncertainty is due to GIS processing and overlay/clip/erase functions that create “sliver” polygons of apparent change due to misalignment of the WRS 1946-71 and DORFLU2019 layers (i.e. co-registration error). This was evaluated using the spatially distributed probabilistic (SDP) method of Leonard and others (2020) and found to be small—generally less than one percent of the area of conversion polygons. Digitizing error was evaluated indirectly and found to be about ±12 percent of the reported area values. The values sum in quadrature to provide an overall estimate of error in polygon area of 12%.
Conversion from flood to sprinkler polygon areas presented in the report, and associated error statistics, apply to the whole dataset at the statewide scale. For use at the basin scale (for example, HUC4 Upper Yellowstone, the end user should review the uncertainty estimate for specific conversion polygons and refine if necessary.
Please see Appendix D_Uncertainty analysis.pdf for details of the analysis: https://www.hydroshare.org/resource/51957cd254b54891ba2e239428bd132d/data/contents/Appendix_D_Uncertainty_Analysis.pdf
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Explore the booming United States Geospatial Analytics Market, driven by AI, IoT, and defense needs. Get insights on market size, CAGR, and key trends shaping industries from agriculture to government. Key drivers for this market are: Increasing in Demand for Location Intelligence, Advancements of Big Data Analytics. Potential restraints include: High Costs and Operational Concerns, Concerns related to Geoprivacy and Confidential Data. Notable trends are: Network Analysis is Expected to Hold Significant Share of the Market.
Facebook
TwitterThe Runways dataset is updated every 28 days from the Federal Aviation Administration (FAA) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Runways database contains runways in the United States and US territories containing information on the physical characteristics of the runways. This data layer contains runways that have corresponding and reported runways ends, and the linear feature of the runway could be created based off these points. The runways in the dataset are associated with the airports dataset on NTAD, showing runways for all official and operational aerodromes. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529077
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In
Facebook
TwitterThis data release describes water service areas (WSA) for community water systems (CWS) within the conterminous United States, representing areas of active service between 2010 and 2020. A WSA is defined by a delineated polygon that contains all customers served by a water system. WSAs are represented by an ArcGIS shapefile. The U.S. Safe Drinking Water Act defines a CWS as a type of public-water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents. Water may be used for several purposes (such as for commercial, industrial, and residential uses) or may be used only for one specific purpose (such as for residential use). This data release includes CWS that operate their own infrastructure and furnish water through their own water sources, purchase water from a neighboring water system, or are diversified in that they serve water from a combination of their own sources and purchases. This dataset also includes communities that do not operate a water system but receive water services by way of contract; in other words, an adjacent water system’s infrastructure extends their waterlines across boundaries from which residents connect to, are supplied, and directly billed from this neighboring water system.
Facebook
TwitterThis layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire. Consumption Best Practices:As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment. When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable. Source: Wildfire points are sourced from Integrated Reporting of Wildland-Fire Information (IRWIN) and perimeters from National Interagency Fire Center (NIFC). Current Incidents: This layer provides a near real-time view of the data being shared through the Integrated Reporting of Wildland-Fire Information (IRWIN) service. IRWIN provides data exchange capabilities between participating wildfire systems, including federal, state and local agencies. Data is synchronized across participating organizations to make sure the most current information is available. The display of the points are based on the NWCG Fire Size Classification applied to the daily acres attribute. Current Perimeters: This layer displays fire perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the National Wildfire Coordinating Group Standards for Geospatial Operations. Update Frequency: Every 15 minutes using the Aggregated Live Feed Methodology based on the following filters:Events modified in the last 7 daysEvents that are not given a Fire Out DateIncident Type Kind: FiresIncident Type Category: Prescribed Fire, Wildfire, and Incident Complex Area Covered: United StatesWhat can I do with this layer? The data includes basic wildfire information, such as location, size, environmental conditions, and resource summaries. Features can be filtered by incident name, size, or date keeping in mind that not all perimeters are fully attributed. Attribute InformationThis is a list of attributes that benefit from additional explanation. Not all attributes are listed. Incident Type Category: This is a breakdown of events into more specific categories.Wildfire (WF) -A wildland fire originating from an unplanned ignition, such as lightning, volcanos, unauthorized and accidental human caused fires, and prescribed fires that are declared wildfires. Prescribed Fire (RX) - A wildland fire originating from a planned ignition in accordance with applicable laws, policies, and regulations to meet specific objectives. Incident Complex (CX) - An incident complex is two or more individual incidents in the same general proximity that are managed together under one Incident Management Team. This allows resources to be used across the complex rather than on individual incidents uniting operational activities. IrwinID: Unique identifier assigned to each incident record in both point and perimeter layers. Acres: these typically refer to the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.Discovery: An estimate of acres burning upon the discovery of the fire.Calculated or GIS: A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire.Daily: A measure of acres reported for a fire.Final: The measure of acres within the final perimeter of a fire. More specifically, the number of acres within the final fire perimeter of a specific, individual incident, including unburned and unburnable islands. Dates: the various systems contribute date information differently so not all fields will be populated for every fire.FireDiscovery: The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes. Containment: The date and time a wildfire was declared contained. Control: The date and time a wildfire was declared under control.ICS209Report: The date and time of the latest approved ICS-209 report.Current: The date and time a perimeter is last known to be updated.FireOut: The date and time when a fire is declared out.ModifiedOnAge: (Integer) Computed days since event last modified.DiscoveryAge: (Integer) Computed days since event's fire discovery date.CurrentDateAge: (Integer) Computed days since perimeter last modified.CreateDateAge: (Integer) Computed days since perimeter entry created. GACC: A code that identifies one of the wildland fire geographic area coordination centers. A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.Fire Mgmt Complexity: The highest management level utilized to manage a wildland fire event. Incident Management Organization: The incident management organization for the incident, which may be a Type 1, 2, or 3 Incident Management Team (IMT), a Unified Command, a Unified Command with an IMT, National Incident Management Organization (NIMO), etc. This field is null if no team is assigned. Unique Fire Identifier: Unique identifier assigned to each wildland fire. yyyy = calendar year, SSUUUU = Point Of Origin (POO) protecting unit identifier (5 or 6 characters), xxxxxx = local incident identifier (6 to 10 characters) RevisionsJan 4, 2021: Added Integer fields 'Days Since...' to Current_Incidents point layer and Current_Perimeters polygon layer. These fields are computed when the data is updated, reflecting the current number of days since each record was last updated. This will aid in making 'age' related, cache friendly queries.Mar 12, 2021: Added second set of 'Age' fields for Event and Perimeter record creation, reflecting age in Days since service data update.Apr 21, 2021: Current_Perimeters polygon layer is now being populated by NIFC's newest data source. A new field was added, 'IncidentTypeCategory' to better distinguish Incident types for Perimeters and now includes type 'CX' or Complex Fires. Five fields were not transferrable, and as a result 'Comments', 'Label', 'ComplexName', 'ComplexID', and 'IMTName' fields will be Null moving forward.Apr 26, 2021: Updated Incident Layer Symbology to better clarify events, reduce download size and overhead of symbols. Updated Perimeter Layer Symbology to better distingish between Wildfires and Prescribed Fires.May 5, 2021: Slight modification to Arcade logic for Symbology, refining Age comparison to Zero for fires in past 24-hours.Aug 16, 2021: Enabled Time Series capability on Layers (off by default) using 'Fire Discovery Date' for Incidents and 'Creation Date' for Perimeters. This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Facebook
TwitterThe Aviation Facilities dataset is updated every 28 days from the Federal Aviation Administration (FAA) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Aviation Facilities dataset is a geographic point database of all official and operational aerodromes in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the aerodrome, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product. For more information about these data, please visit: https://www.faa.gov/air_traffic/flight_info/aeronav/Aero_Data/NASR_Subscription. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529011
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The PLSS Quarter Section Reference is a companion feature class for the PLSS Reference Grid that provides a quarter section division of the sections for reference only. This data set represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners and Conflicted Areas (known areas of gaps or overlaps between Townships or state boundaries). The Entity-Attribute section of this metadata describes these components in greater detail.
Facebook
TwitterThis web application contains information from the Bureau of Indian Affairs, The U.S.G.S., The U.S. Census and BLM. The following information is in relation to the Surface Management Agency layer created by BLM: The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. For more information on theProtected Areas Database (PAD-US) 3.0 Datalayer visit: https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-data-download or U.S. Geological Survey (USGS) Gap Analysis Project (GAP), 2022, Protected Areas Database of the United States (PAD-US) 3.0: U.S. Geological Survey data release, https://doi.org/10.5066/P9Q9LQ4B.
Facebook
TwitterThe Port and Port Statistical Area web service allows users to visualize and access two USACE enterprise-wide feature classes: the Port Feature Class and the Port Statistical Area Feature Class, both of which include polygon geometries used to generate statistics for commerce data and vessel movements. The GIS service includes attributes such as port name, boundary description, and associated legislative documentation.
USACE works with port authorities from across the United States to develop the statistical port boundaries through an iterative and collaborative process. Port boundary information is prepared by USACE to increase transparency on public waterborne commerce statistic reporting, as well as to modernize how the data type is stored, analyzed, and reported.
A Port Area is defined by the limits set by overarching legislative enactments of state, county, or city governments, or the corporate limits of a municipality. A port typically refers to a geographical area that includes operational activities related to maritime transport as well as acquisition, operation, and management of port infrastructure and property, such as might be associated with ownership, concession, construction approval, or policy decision-making authority.
A Port Statistical Area (PSA) is a region with formally justified shared economic interests and collective reliance on infrastructure related to waterborne movements of commodities that is formally recognized by legislative enactments of state, county, or city governments. PSAs generally contain groups of county legislation for the sole purpose of statistical reporting. Through GIS mapping, legislative boundaries, and stakeholder collaboration, PSAs often serve as the primary unit for aggregating and reporting commerce statistics for broader geographical areas.
Per Engineering Regulation 1130-2-520, the U.S. Army Corps of Engineers' Navigation Data Center is responsible to collect, compile, publish, and disseminate waterborne commerce statistics. This task has subsequently been charged to the Waterborne Commerce Statistics Center to perform. Performance of this work is in accordance with the Rivers and Harbors Appropriation Act of 1922. Included in this work is the definition of a port area. A port area is defined in Engineering Pamphlet 1130-2-520 as: (1) Port limits defined by legislative enactments of state, county, or city governments. (2) The corporate limits of a municipality. The USACE enterprise-wide port and port statistical area feature classes per EP 1130-2-520 are organized in SDSFIE 4.0.2 format.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.