100+ datasets found
  1. d

    Universities and Colleges

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Technology Officer (2025). Universities and Colleges [Dataset]. https://catalog.data.gov/dataset/universities-and-colleges
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Office of the Chief Technology Officer
    Description

    This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.

  2. a

    Colleges and Universities Campuses

    • hub.arcgis.com
    • disasters-geoplatform.hub.arcgis.com
    • +6more
    Updated Jun 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2019). Colleges and Universities Campuses [Dataset]. https://hub.arcgis.com/datasets/bc7ef39f9d2a4605b9d5aad0e050af11
    Explore at:
    Dataset updated
    Jun 28, 2019
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The College and University Campuses feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Homeland Infrastructure Foundation-Level Data (HIFLD) Colleges and Universities and Supplemental Colleges point feature classes/shapefiles with a POPULATION value greater than or equal to 500. Also included is a subset of campuses with a POPULATION value under 500 or equal to -999. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Excluded are online institutions and administrative records as well as colleges and universities that do not have a verifiable campus map. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class/shapefile contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges and Colleges and Universities. Note that attribution is derived from the Colleges and Universities and Supplemental Colleges feature classes/shapefiles. Refer to the metadata of those feature classes/shapefiles for further information regarding attribution. This release includes 21 new records and the removal of 88 records that are no longer applicable based on the sourced datasets.

  3. Colleges and Universities

    • geodata.colorado.gov
    • sdgs.amerigeoss.org
    • +10more
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2020). Colleges and Universities [Dataset]. https://geodata.colorado.gov/datasets/d257743c055e4206bd8a0f2d14af69fe
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    Colleges and UniversitiesThis feature layer, utilizing data from the National Center for Education Statistics (NCES), displays colleges and universities in the U.S. and its territories. NCES uses the Integrated Postsecondary Education Data System (IPEDS) as the "primary source for information on U.S. colleges, universities, and technical and vocational institutions." According to NCES, this layer "contains directory information for every institution in the 2021-22 IPEDS universe. Includes name, address, city, state, zip code and various URL links to the institution's home page, admissions, financial aid offices and the net price calculator. Identifies institutions as currently active, institutions that participate in Title IV federal financial aid programs for which IPEDS is mandatory. It also includes variables derived from the 2021-22 Institutional Characteristics survey, such as control and level of institution, highest level and highest degree offered and Carnegie classifications."Gallaudet UniversityData currency: 2021Data source: IPEDS Complete Data FilesData modification: Removed fields with coded values and replaced with descriptionsFor more information: Integrated Postsecondary Education Data SystemSupport documentation: IPEDS Complete Data Files > Directory Information > DictionaryFor feedback, please contact: ArcGIScomNationalMaps@esri.comU.S. Department of Education (ED)Per ED, "ED's mission is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.ED was created in 1980 by combining offices from several federal agencies." ED's employees and budget "are dedicated to:Establishing policies on federal financial aid for education, and distributing as well as monitoring those funds.Collecting data on America's schools and disseminating research.Focusing national attention on key educational issues.Prohibiting discrimination and ensuring equal access to education."

  4. H

    Datasets for Computational Methods and GIS Applications in Social Science

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  5. o

    University of Michigan-Flint GIS Center Data

    • openicpsr.org
    Updated Sep 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Michigan-Flint GIS Center (2016). University of Michigan-Flint GIS Center Data [Dataset]. http://doi.org/10.3886/E100254V1
    Explore at:
    Dataset updated
    Sep 2, 2016
    Dataset authored and provided by
    University of Michigan-Flint GIS Center
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Flint, Michigan
    Description

    This project consists of two datasets. The first is a GIS shapefile of Flint Community Schools that are open as of Fall 2016. The second is a GIS shapefile of City of Flint service line connections.

  6. n

    Colleges

    • data.gis.ny.gov
    • opdgig.dos.ny.gov
    • +2more
    Updated Dec 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2022). Colleges [Dataset]. https://data.gis.ny.gov/datasets/colleges
    Explore at:
    Dataset updated
    Dec 30, 2022
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    NYS Colleges and Universities including SUNY, CUNY, independent, military, nursing, and proprietary institutions.

  7. Digital Geologic-GIS Map of the Cave Creek School Quadrangle, Texas (NPS,...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Cave Creek School Quadrangle, Texas (NPS, GRD, GRI, LYJO, CCSC digital map) adapted from a Texas Bureau of Economic Geology, University of Texas at Austin Geologic Quadrangle Map by Barnes (1967) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-cave-creek-school-quadrangle-texas-nps-grd-gri-lyjo-ccsc-d
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Texas, Austin
    Description

    The Unpublished Digital Geologic-GIS Map of the Cave Creek School Quadrangle, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (ccsc_geology.gdb), a 10.1 ArcMap (.mxd) map document (ccsc_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). Presently, a GRI Google Earth KMZ/KML product doesn't exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ccsc_geology_metadata.txt or ccsc_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Lyndon B. Johnson National Historical Park.

  8. a

    Colleges and Universities

    • data-ral.opendata.arcgis.com
    • data.wake.gov
    • +4more
    Updated Jun 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wake County (2016). Colleges and Universities [Dataset]. https://data-ral.opendata.arcgis.com/datasets/cfabd5fb515b4b45a2714d48fbcd2dd5
    Explore at:
    Dataset updated
    Jun 21, 2016
    Dataset authored and provided by
    Wake County
    Area covered
    Description

    Wake County college and university locations

  9. M

    School Program Locations, Minnesota, SY2024-25

    • gisdata.mn.gov
    ags_mapserver, csv +5
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education Department (2024). School Program Locations, Minnesota, SY2024-25 [Dataset]. https://gisdata.mn.gov/dataset/struc-school-program-locs
    Explore at:
    csv, html, jpeg, fgdb, shp, gpkg, ags_mapserverAvailable download formats
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Education Department
    Area covered
    Minnesota
    Description

    This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.

    Maintenance of these locations are a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.

    Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. In particular, some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so some records included in this file may in fact be inactive or inaccurately located.

    Note that multiple programs may occur at the same location and are represented as separate records. For example, a junior and a senior high school may be in the same building, but each has a separate record in the data layer. Users leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.

    This data is now available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.

  10. Colleges and Universities

    • gisnation-sdi.hub.arcgis.com
    • azgeo-open-data-agic.hub.arcgis.com
    • +7more
    Updated Jun 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2022). Colleges and Universities [Dataset]. https://gisnation-sdi.hub.arcgis.com/datasets/geoplatform::colleges-and-universities
    Explore at:
    Dataset updated
    Jun 30, 2022
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2020-2021 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 128 new records, the removal of 247 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6312 records.

  11. State Land - Line

    • statewide-geoportal-1-soa-dnr.hub.arcgis.com
    • data-soa-dnr.opendata.arcgis.com
    • +2more
    Updated Apr 5, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2006). State Land - Line [Dataset]. https://statewide-geoportal-1-soa-dnr.hub.arcgis.com/maps/SOA-DNR::state-land-line-1
    Explore at:
    Dataset updated
    Apr 5, 2006
    Dataset provided by
    Authors
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    Lands conveyed to the State of Alaska with a variety of cases such as general purpose, expansion of communities, University of Alaska, and recreational purposes. This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction. Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.

  12. n

    Oyster Creek Flood Study (Draft) - GIS Layers | Dataset | SEED

    • datasets.seed.nsw.gov.au
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oyster Creek Flood Study (Draft) - GIS Layers | Dataset | SEED [Dataset]. https://datasets.seed.nsw.gov.au/dataset/oyster-creek-flood-study-draft-gis-layers
    Explore at:
    Description

    Oyster Creek Flood Study (Draft)

  13. Data from: Remapping California's Wildland Urban Interface: A Property-Level...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksander K Berg; Aleksander K Berg; Dylan S. Connor; Dylan S. Connor; Peter J. Kedron; Peter J. Kedron; Amy E. Frazier; Amy E. Frazier (2025). Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020 [Dataset]. http://doi.org/10.5281/zenodo.11043572
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Aleksander K Berg; Aleksander K Berg; Dylan S. Connor; Dylan S. Connor; Peter J. Kedron; Peter J. Kedron; Amy E. Frazier; Amy E. Frazier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Maps of California's Wildland Urban Interface (WUI) generated using the Time Step Moving Window (TSMW) method outlined in the paper "Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020".

    Please cite the original paper:

    Berg, Aleksander K, Dylan S. Connor, Peter Kedron, and Amy E. Frazier. 2024. “Remapping California’s Wildland Urban Interface: A Property-Level Time-Space Framework, 2000–2020.” Applied Geography 167 (June): 103271. https://doi.org/10.1016/j.apgeog.2024.103271.


    WUI maps were generated using Zillow ZTRAX parcel level attributes joined with FEMA USA Structures building footprints and the National Land Cover Database (NLCD).

    All files are geotiff rasters with WUI areas mapped at a ~30m resolution. A raster value of null indicates not WUI, raster value of 1 indicates intermix WUI, and a raster value of 2 indicates interface WUI.

    Three WUI maps were generated using structures built on of before the years indicated below:

    2000 - "CA_WUI_2000.tif"

    2010 - "CA_WUI_2010.tif"

    2020 - "CA_WUI_2020.tif"

    Acknowledgments -

    We thank our reviewers and editors for helping us to improve the manuscript. We gratefully acknowledge access to the Zillow Transaction and Assessment Dataset (ZTRAX) through a data use agreement between the University of Colorado Boulder, Arizona State University, and Zillow Group, Inc. More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of Zillow Group. Support by Zillow Group Inc. is acknowledged. We thank Johannes Uhl and Stefan Leyk for their great work in preparing the original dataset. For feedback and comments, we also thank Billie Lee Turner II, Sharmistha Bagchi-Sen, and participants at the 2022 Global Conference on Economic Geography, the 2022 Young Economic Geographers Network meeting, and the 2023 annual meeting of the American Association of Geographers. Funding for our work has been provided by Arizona State University's Institute of Social Science Research (ISSR) Seed Grant Initiative. Additional funding was provided through the Humans, Disasters, and the Built Environment program of the National Science Foundation, Award Number 1924670 to the University of Colorado Boulder, the Institute of Behavioral Science, Earth Lab, the Cooperative Institute for Research in Environmental Sciences, the Grand Challenge Initiative and the Innovative Seed Grant program at the University of Colorado Boulder as well as the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Numbers R21 HD098717 01A1 and P2CHD066613.

  14. d

    DEP's Citywide Parcel-Based Impervious Area GIS Study

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DEP's Citywide Parcel-Based Impervious Area GIS Study [Dataset]. https://catalog.data.gov/dataset/deps-citywide-parcel-based-impervious-area-gis-study
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    NOTE: This file includes data for all 5 boroughs and has a size of 4.60 GB. Individual borough files are available for download from the metadata attachments section. Citywide Geographic Information System (GIS) land cover layer that displays land cover classification, plus pervious and impervious area and percentage at the parcel level, separated into 5 geodatabases, one per borough. DEP hosted a webinar on this study on June 23, 2020. A recording of the webinar, plus a PDF of the webinar presentation, accompany this dataset and are available for download. Please direct questions and comments to DEP at imperviousmap@dep.nyc.gov. This citywide parcel-level impervious area GIS layer was developed by the City of New York to support stormwater-related planning, and is provided solely for informational purposes. The accuracy of the data should be independently verified for any other purpose. The City disclaims any liability for errors and makes no warranties express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose as to the quality, content, accuracy or completeness of the information, text graphics, links and other items contained in this GIS layer.

  15. Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area (1:10,000 scale 2006 mapping), North Carolina (NPS, GRD, GRI, CAHA, KHWJ_geomorphology digital map) adapted from a East Carolina University unpublished digital data map by Ames and Riggs (2006) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-kitty-hawk-to-whalebone-junction-area-1-10000-scale-2006
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    North Carolina, Kitty Hawk
    Description

    The Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (khwj_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (khwj_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (khwj_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geomorphology.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (khwj_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geomorphology.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (khwj_geomorphology_metadata.txt or khwj_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. H

    Hartwell China Historical GIS

    • dataverse.harvard.edu
    Updated Sep 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Hartwell (2016). Hartwell China Historical GIS [Dataset]. http://doi.org/10.7910/DVN/29302
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2016
    Dataset provided by
    Harvard Dataverse
    Authors
    Robert Hartwell
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    0741 - 1391
    Area covered
    China
    Description

    Prof. Robert Hartwell (1932 - 1996) created his China Historical GIS under the auspices of his company Chinese Historical Studies. His estate left the data to Harvard University. These materials include functional GIS datasets for the Chinese Dynasties, from Tang to Ming, which were based on the concept of "co-location," or the use of GIS representations of modern county-level administrative units as building blocks to depict the approximate shapes of historical areas. Making use of county boundary data for 1992, (obtained from Crissman's ACASIAN data), Hartwell represented historical units that occupied roughly the same areas by merging or splitting the 1992 counties. Where the contemporary boundaries could not be "co-located" in this fashion, Hartwell drew in approximate line boundaries to divide the contemporary units to fit the historical situations and therefore provide an approximation of the historical unit's area. Although the resulting boundaries are, in many cases, problematic representations, the GIS remains an interesting hueristic GIS tool for sorting, querying, and creating digital maps for selected areas within the major dynasties up to the Ming. Harvard University released the original Hartwell datasets on April 2nd, 2001, in conjunction with the CHGIS project, as a useful means of generating approximate spatial entities correlating to historical administrative units. For Version 5, the Hartwell Datasets were renamed according to a filenaming convention (described above) and projected to match the CHGIS V5 standard (2014).

  17. f

    Technology Cluster Data extracted from USPTO Patent Grants (2000-2011)

    • figshare.com
    • data.4tu.nl
    txt
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pieter Stek (2023). Technology Cluster Data extracted from USPTO Patent Grants (2000-2011) [Dataset]. http://doi.org/10.4121/18858683.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    4TU.ResearchData
    Authors
    Pieter Stek
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset is a supplement for P.E. Stek's PhD Thesis project titled "The Development of Technology Cluster InnovationPerformance: Health and Sustainable Energy" (January 2022). The dataset covers approximately 20 high technology sectors and is useful for comparative technology sector analysis. The patent distance data used to measure the effectiveness of the cluster identification method is also included.

  18. d

    GIS DATA for Sustainable Agriculture Research and Extension Center (SAREC),...

    • datadiscoverystudio.org
    Updated Jan 1, 1900
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Agriculture Research and Extension Center (SAREC) GIS DATA, University of Wyoming; D. Claypool, University of Wyoming Dept. of Plant Sciences; Wyoming Geographic Information Science Center (WyGISC); Agricultural Experiment Station (1900). GIS DATA for Sustainable Agriculture Research and Extension Center (SAREC), University of Wyoming [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/aafb31f9305442d3821cd594c1aa4af7/html
    Explore at:
    Dataset updated
    Jan 1, 1900
    Dataset provided by
    SAREC
    Authors
    Sustainable Agriculture Research and Extension Center (SAREC) GIS DATA, University of Wyoming; D. Claypool, University of Wyoming Dept. of Plant Sciences; Wyoming Geographic Information Science Center (WyGISC); Agricultural Experiment Station
    Area covered
    Description

    URL from idinfo/citation in CSDGM metadata.

  19. Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee (NPS, GRD, GRI, OBED, FOCR_bedrock digital map) adapted from a University of Tennessee, Tectonics and Structural Geology Research Group 7.5-Minute Series Map by Scruggs, Rascoe, Stearns, Hansen, Wunderlich and Hatcher (2015) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-fox-creek-quadrangle-tennessee-nps-grd-gri-obed-fo
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (focr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (focr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (focr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Tennessee, Tectonics and Structural Geology Research Group. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (focr_bedrock_geology_metadata.txt or focr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. a

    College or University

    • montgomery-county-gis-open-data-2025-mcgov-gis.hub.arcgis.com
    Updated Oct 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montgomery County, MD (2023). College or University [Dataset]. https://montgomery-county-gis-open-data-2025-mcgov-gis.hub.arcgis.com/datasets/college-or-university-1
    Explore at:
    Dataset updated
    Oct 17, 2023
    Dataset authored and provided by
    Montgomery County, MD
    Area covered
    Description

    Updated as needed by TEBS-GIS using various sources.Can be downloaded from the GIS Data Portal here.Access directly in the TEBS-GIS database in SDE.LOCATIONS, SDE.College_University

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office of the Chief Technology Officer (2025). Universities and Colleges [Dataset]. https://catalog.data.gov/dataset/universities-and-colleges

Universities and Colleges

Explore at:
Dataset updated
Feb 5, 2025
Dataset provided by
Office of the Chief Technology Officer
Description

This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.

Search
Clear search
Close search
Google apps
Main menu