This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching one or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.
This archive contains a terrain slope image, in units of degrees, of the Utah FORGE area near Roosevelt Hot springs. The data was derived from 0.5 m resolution LiDAR DEM data and is in a GeoTiff format. It was processed using ArcGIS.
This is a zipped GIS compatible shapefile of gravity data points used in the Milford, Utah FORGE project as of March 21st, 2016. The shapefile is native to ArcGIS, but can be used with many GIS software packages. Additionally, there is a .dbf (dBase) file that contains the dataset which can be read with Microsoft Excel.
The Data was downloaded from the PACES (Pan American Center for Earth and Environmental Studies) hosted by University of Texas El Paso (http://research.utep.edu/Default.aspx?alias=research.utep.edu/paces) Explanation:Source: data source code if available LatNAD83: latitude in NAD83 [decimal degrees] LonNAD83: longitude in NAD83 [decimal degrees]zWGS84: elevation in WGS84 (ellipsoidal) [m]OBSless976: observed gravity minus 976000 mGalIZTC: inner zone terrain correction [mGal]OZTC: outer zone terrain correction [mGal]FA: Free Air anomaly value [mGal]CBGA: Complete Bouguer gravity anomaly value [mGal] This is a zipped GIS compatible shapefile of gravity data points used in the Milford, Utah FORGE project as of March 21st, 2016. The shapefile is native to ArcGIS, but can be used with many GIS software packages. Additionally, there is a .dbf (dBase) file that contains the dataset which can be read with Microsoft Excel.
The Data was downloaded from the PACES (Pan American Center for Earth and Environmental Studies) hosted by University of Texas El Paso (http://research.utep.edu/Default.aspx?alias=research.utep.edu/paces) Explanation:Source: data source code if available LatNAD83: latitude in NAD83 [decimal degrees] LonNAD83: longitude in NAD83 [decimal degrees]zWGS84: elevation in WGS84 (ellipsoidal) [m]OBSless976: observed gravity minus 976000 mGalIZTC: inner zone terrain correction [mGal]OZTC: outer zone terrain correction [mGal]FA: Free Air anomaly value [mGal]CBGA: Complete Bouguer gravity anomaly value [mGal]
AuthorityIn the 1963 general session, the Utah State Legislature charged the Division of Water Resources with the responsibility of developing a State Water Plan. This plan is to coordinate and direct the activities of state and federal agencies concerned with Utah’s water resources. As a part of this objective, the Division of Water Resources collects water-related land use data for the entire state. This data includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and urban areas.The data produced by the water-related land use program are used for various planning purposes. Some of these include: determining cropland water use, evaluating irrigated land losses and conversion to urban uses, planning for new water development, estimating irrigated acreages for any area, and developing water budgets. Additionally, the data are used by many other state and federal agencies.Previous MethodsThe land use inventory methods used by the division in conducting water-related land use studies have varied with regard to the procedures used and the precision obtained. During the 1960s and 70s, inventories were prepared using large format vertical-aerial photographs supplemented with field surveys to label boundaries, vegetation types, and other water use information.After identifying crops and labeling photographs, the information was transferred onto a base map and then planimetered or "dot-counted" to determine the acreage. Tables for individual townships and ranges were prepared showing the amount of land in each land use category within each section. Data were then available for use in preparing water budgets.In the early 1980s, the division began updating its methodology for collecting water-related land use data to take advantage of the rapidly growing fields of Remote Sensing and computerized Geographic Information Systems (GIS).For several years during the early 1980’s, the division contracted with the University of Utah Research Institute, Center for Remote Sensing and Cartography (CRSC), to prepare water-related land use inventories. During this period, water-related land use data was obtained by using high altitude color infrared photography and laboratory interpretation, with field checking.In March 1984, several division staff members visited the California Department of Water Resources to observe its methodology for collecting water-related land use data for state water planning purposes.Based on its review of the California methodology and its own experience, the division developed a water-related land use inventory program. This program included the use of 35mm slides, United States Geological Survey (USGS) 7-1/2 minute quadrangle maps, field-mapping using base maps produced from the 35mm photography and a computerized GIS to process, store and retrieve land use data.Areas for survey were first identified from previous land use studies and any other available information. The identified areas were then photographed using an aircraft carrying a high quality 35mm single lens reflex camera mounted to focus along a vertical axis to the earth. Photos were taken between 6,000 and 6,500 feet above the ground using a 24mm lens. This procedure allowed each slide to cover a little more than one square mile with approximately 30 percent overlap on the wide side of the slide and 5 percent on the slide's narrow side.The slides were then indexed according to a flight-line number, slide number, latitude and longitude. All 35mm slides were stored in files at the division offices and cataloged according to township, range and section, and quadrangle map location.Water-related land use areas were then transferred from the slide to USGS 7-1/2 minute quadrangle maps using a standard slide projector with a 100-200mm zoom lens. This step allowed the technician to project the slide onto the back of a quadrangle map. The image showing through the map was adjusted to the map scale with the zoom lens. Field boundaries and other water-use boundaries were then traced on the 7-1/2 minute quadrangle map.Next, a team was sent to use the map in the field to check the boundaries and current year land use field data on the 7-1/2 minute quadrangles.The final step was to digitize and process the field data using ARC/INFO software developed by Environmental Systems Research Institute (ESRI).Starting in 2000 with the land use survey of the Uintah Basin, the division further improved its land use program by using digital data for the purposes of outlining agricultural and other land cover boundaries. The division used satellite data, USGS Digital Orthophoto Quadrangles (DOQs), National Agricultural Imagery Program (NAIP), and other digital images in a heads-up digitizing mode for this process. This allowed the division to use multiple technicians for the digitizing process.Digitizing was done as line and polygon files using ArcView 3.2 with a satellite image, DOQ or NAIP image as a background with other layers added for reference. Boundary files were created in logical groups so that the process of edge-matching along quad lines was eliminated and precision increased. Subsequent inventories were digitized in the ArcMap 9.x software versions. Using the latest statewide NAIP Imagery and ArcGIS 10, all boundaries of individual agricultural fields, urban areas, and significant riparian areas are precisely digitized.Once the process of boundary digitizing is done, the polygons are loaded onto tablet PCs. Field crews are then sent to field check the crop and irrigation type for each agricultural polygon and label the shapefiles accordingly. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. This improved process has saved the division much time and money and even greater savings will be realized as the new statewide field boundaries are completed.Once processed and quality checked, the data is filed in the State Geographic Information Database (SGID) maintained by the State Automated Geographic Reference Center (AGRC). Once in the SGID, the data becomes available to the public. At this point, the data is also ready for use in preparing various planning studies.Present Methodology2017 marked the first year of using the CDL Method for the whole state of Utah. This method utilizes the Cropland Data Layer from the USDA's National Ag. Statistics Service which provides acreage estimates major commodities and to produce crop-specific geo-referenced products at 30m resolution. The CDL Method utilizes past line work digitized by the division and reconciles changes that may have occurred, including new crop types or ag-to-urban conversions.In conducting water-related land use inventories, the division attempts to inventory all lands or areas that consume or evaporate water other than natural precipitation. Areas not inventoried are mainly desert, rangeland and forested areas.Wet/open water areas and dry land agriculture areas are mapped if they are within or border irrigated lands. As a result, the numbers of acres of wet/open water areas and dry land agriculture reported by the division may not represent all such areas in a basin or county.During land use inventories, the division uses 11 hydrologic basins as the basic collection units. County data is obtained from the basin data. The water-related land use data collected statewide covers more than 4.3 million acres of dry and irrigated agricultural land. This represents about 8 percent of the total land area in the state.Due to changes in methodology, improvements in imagery, and upgrades in software and hardware, increasingly more refined inventories have been made in each succeeding year of the Water-Related Land Use Inventory. While this improves the data we report, it also makes comparisons to past years difficult. Making comparisons between datasets is still useful; however, increases or decreases in acres reported should not be construed to represent definite trends or total amounts of change up or down. To estimate such trends or change, more analysis is required.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
AuthorityIn the 1963 general session, the Utah State Legislature charged the Division of Water Resources with the responsibility of developing a State Water Plan. This plan is to coordinate and direct the activities of state and federal agencies concerned with Utah’s water resources. As a part of this objective, the Division of Water Resources collects water-related land use data for the entire state. This data includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and urban areas.The data produced by the water-related land use program are used for various planning purposes. Some of these include: determining cropland water use, evaluating irrigated land losses and conversion to urban uses, planning for new water development, estimating irrigated acreages for any area, and developing water budgets. Additionally, the data are used by many other state and federal agencies.Previous MethodsThe land use inventory methods used by the division in conducting water-related land use studies have varied with regard to the procedures used and the precision obtained. During the 1960s and 70s, inventories were prepared using large format vertical-aerial photographs supplemented with field surveys to label boundaries, vegetation types, and other water use information.After identifying crops and labeling photographs, the information was transferred onto a base map and then planimetered or "dot-counted" to determine the acreage. Tables for individual townships and ranges were prepared showing the amount of land in each land use category within each section. Data were then available for use in preparing water budgets.In the early 1980s, the division began updating its methodology for collecting water-related land use data to take advantage of the rapidly growing fields of Remote Sensing and computerized Geographic Information Systems (GIS).For several years during the early 1980’s, the division contracted with the University of Utah Research Institute, Center for Remote Sensing and Cartography (CRSC), to prepare water-related land use inventories. During this period, water-related land use data was obtained by using high altitude color infrared photography and laboratory interpretation, with field checking.In March 1984, several division staff members visited the California Department of Water Resources to observe its methodology for collecting water-related land use data for state water planning purposes.Based on its review of the California methodology and its own experience, the division developed a water-related land use inventory program. This program included the use of 35mm slides, United States Geological Survey (USGS) 7-1/2 minute quadrangle maps, field-mapping using base maps produced from the 35mm photography and a computerized GIS to process, store and retrieve land use data.Areas for survey were first identified from previous land use studies and any other available information. The identified areas were then photographed using an aircraft carrying a high quality 35mm single lens reflex camera mounted to focus along a vertical axis to the earth. Photos were taken between 6,000 and 6,500 feet above the ground using a 24mm lens. This procedure allowed each slide to cover a little more than one square mile with approximately 30 percent overlap on the wide side of the slide and 5 percent on the slide's narrow side.The slides were then indexed according to a flight-line number, slide number, latitude and longitude. All 35mm slides were stored in files at the division offices and cataloged according to township, range and section, and quadrangle map location.Water-related land use areas were then transferred from the slide to USGS 7-1/2 minute quadrangle maps using a standard slide projector with a 100-200mm zoom lens. This step allowed the technician to project the slide onto the back of a quadrangle map. The image showing through the map was adjusted to the map scale with the zoom lens. Field boundaries and other water-use boundaries were then traced on the 7-1/2 minute quadrangle map.Next, a team was sent to use the map in the field to check the boundaries and current year land use field data on the 7-1/2 minute quadrangles.The final step was to digitize and process the field data using ARC/INFO software developed by Environmental Systems Research Institute (ESRI).Starting in 2000 with the land use survey of the Uintah Basin, the division further improved its land use program by using digital data for the purposes of outlining agricultural and other land cover boundaries. The division used satellite data, USGS Digital Orthophoto Quadrangles (DOQs), National Agricultural Imagery Program (NAIP), and other digital images in a heads-up digitizing mode for this process. This allowed the division to use multiple technicians for the digitizing process.Digitizing was done as line and polygon files using ArcView 3.2 with a satellite image, DOQ or NAIP image as a background with other layers added for reference. Boundary files were created in logical groups so that the process of edge-matching along quad lines was eliminated and precision increased. Subsequent inventories were digitized in the ArcMap 9.x software versions. Present MethodologyUsing the latest statewide NAIP Imagery and ArcGIS 10, all boundaries of individual agricultural fields, urban areas, and significant riparian areas are precisely digitized. 2017 marked the first year of using the CDL Method for the whole state of Utah. This method utilizes the Cropland Data Layer from the USDA's National Ag. Statistics Service which provides acreage estimates major commodities and to produce crop-specific geo-referenced products at 30m resolution. The CDL Method utilizes past line work digitized by the division and reconciles changes that may have occurred, including new crop types or ag-to-urban conversions.Once the process of boundary digitizing is done, the polygons are loaded onto tablet PCs. Field crews are then sent to field check the crop and irrigation type for each agricultural polygon and label the shapefiles accordingly. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. This improved process has saved the division much time and money and even greater savings will be realized as the new statewide field boundaries are completed.Once processed and quality checked, the data is filed in the State Geographic Information Database (SGID) maintained by the State Automated Geographic Reference Center (AGRC). Once in the SGID, the data becomes available to the public. At this point, the data is also ready for use in preparing various planning studies.In conducting water-related land use inventories, the division attempts to inventory all lands or areas that consume or evaporate water other than natural precipitation. Areas not inventoried are mainly desert, rangeland and forested areas.Wet/open water areas and dry land agriculture areas are mapped if they are within or border irrigated lands. As a result, the numbers of acres of wet/open water areas and dry land agriculture reported by the division may not represent all such areas in a basin or county.During land use inventories, the division uses 11 hydrologic basins as the basic collection units. County data is obtained from the basin data. The water-related land use data collected statewide covers more than 4.3 million acres of dry and irrigated agricultural land. This represents about 8 percent of the total land area in the state.Due to changes in methodology, improvements in imagery, and upgrades in software and hardware, increasingly more refined inventories have been made in each succeeding year of the Water-Related Land Use Inventory. While this improves the data we report, it also makes comparisons to past years difficult. Making comparisons between datasets is still useful; however, increases or decreases in acres reported should not be construed to represent definite trends or total amounts of change up or down. To estimate such trends or change, more analysis is required.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching one or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.