100+ datasets found
  1. 2013: Web GIS Overview and Update

    • anrgeodata.vermont.gov
    Updated Jul 26, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri's Hydrology Team (2013). 2013: Web GIS Overview and Update [Dataset]. https://anrgeodata.vermont.gov/documents/3eb9a132340f433b87b330eac6c32b4d
    Explore at:
    Dataset updated
    Jul 26, 2013
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri's Hydrology Team
    Description

    ArcGIS is a platform, and the platform is extending to the web. ArcGIS Online offers shared content, and has become a living atlas of the world. Ready-to-use curated content is published by Esri, Partners, and Users, and Esri is getting the ball rolling by offering authoritative data layers and tools.Specifically for Natural Resources data, Esri is offering foundational data useful for biogeographic analysis, natural resource management, land use planning and conservation. Some of the layers available are Land Cover, Wilderness Areas, Soils Range Production, Soils Frost Free Days, Watershed Delineation, Slope. The layers are available as Image Services that are analysis-ready and Geoprocessing Services that extract data for download and perform analysis.We've made large strides with online analysis. The latest release of ArcGIS Online's map viewer allows you to perform analysis on ArcGIS Online. Some of the currently available analysis tools are Find Hot Spots, Create Buffers, Summarize Within, Summarize Nearby. In addition, we've created Ready-to-use Esri hosted analysis tools that run on Esri hosted data. These are in Beta, and they include Watershed Delineation, Viewshed, Profile, and Summarize Elevation.

  2. a

    Parcel Points Shapefile

    • hub.arcgis.com
    • maps.leegov.com
    • +1more
    Updated Aug 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee County Florida GIS (2022). Parcel Points Shapefile [Dataset]. https://hub.arcgis.com/datasets/f13fddbfe8fb444da730974693ee643b
    Explore at:
    Dataset updated
    Aug 15, 2022
    Dataset authored and provided by
    Lee County Florida GIS
    Description

    Parcels and property data maintained and provided by Lee County Property Appraiser are converted to points. Property attribute data joined to parcel GIS layer by Lee County Government GIS. This dataset is generally used in spatial analysis.Process description: Parcel polygons, condominium points and property data provided by the Lee County Property Appraiser are processed by Lee County's GIS Department using the following steps:Join property data to parcel polygons Join property data to condo pointsConvert parcel polygons to points using ESRI's ArcGIS tool "Feature to Point" and designate the "Source" field "P".Load Condominium points into this layer and designate the "Source" field "C". Add X/Y coordinates in Florida State Plane West, NAD 83, feet using the "Add X/Y" tool.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983

     Name
     Type
     Length
     Description
    
    
     STRAP
     String
     25
     17-digit Property ID (Section, Township, Range, Area, Block, Lot)
    
    
     BLOCK
     String
     10
     5-digit portion of STRAP (positions 9-13)
    
    
     LOT
     String
     8
     Last 4-digits of STRAP
    
    
     FOLIOID
     Double
     8
     Unique Property ID
    
    
     MAINTDATE
     Date
     8
     Date LeePA staff updated record
    
    
     MAINTWHO
     String
     20
     LeePA staff who updated record
    
    
     UPDATED
     Date
     8
     Data compilation date
    
    
     HIDE_STRAP
     String
     1
     Confidential parcel ownership
    
    
     TRSPARCEL
     String
     17
     Parcel ID sorted by Township, Range & Section
    
    
     DORCODE
     String
     2
     Department of Revenue. See https://leepa.org/Docs/Codes/DOR_Code_List.pdf
    
    
     CONDOTYPE
     String
     1
     Type of condominium: C (commercial) or R (residential)
    
    
     UNITOFMEAS
     String
     2
     Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
    
    
     NUMUNITS
     Double
     8
     Number of Land Units (units defined in UNITOFMEAS)
    
    
     FRONTAGE
     Integer
     4
     Road Frontage in Feet
    
    
     DEPTH
     Integer
     4
     Property Depth in Feet
    
    
     GISACRES
     Double
     8
     Total Computed Acres from GIS
    
    
     TAXINGDIST
     String
     3
     Taxing District of Property
    
    
     TAXDISTDES
     String
     60
     Taxing District Description
    
    
     FIREDIST
     String
     3
     Fire District of Property
    
    
     FIREDISTDE
     String
     60
     Fire District Description
    
    
     ZONING
     String
     10
     Zoning of Property
    
    
     ZONINGAREA
     String
     3
     Governing Area for Zoning
    
    
     LANDUSECOD
     SmallInteger
     2
     Land Use Code
    
    
     LANDUSEDES
     String
     60
     Land Use Description
    
    
     LANDISON
     String
     5
     BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
    
    
     SITEADDR
     String
     55
     Lee County Addressing/E911
    
    
     SITENUMBER
     String
     10
     Property Location - Street Number
    
    
     SITESTREET
     String
     40
     Street Name
    
    
     SITEUNIT
     String
     5
     Unit Number
    
    
     SITECITY
     String
     20
     City
    
    
     SITEZIP
     String
     5
     Zip Code
    
    
     JUST
     Double
     8
     Market Value
    
    
     ASSESSED
     Double
     8
     Building Value + Land Value
    
    
     TAXABLE
     Double
     8
     Taxable Value
    
    
     LAND
     Double
     8
     Land Value
    
    
     BUILDING
     Double
     8
     Building Value
    
    
     LXFV
     Double
     8
     Land Extra Feature Value
    
    
     BXFV
     Double
     8
     Building Extra Feature value
    
    
     NEWBUILT
     Double
     8
     New Construction Value
    
    
     AGAMOUNT
     Double
     8
     Agriculture Exemption Value
    
    
     DISAMOUNT
     Double
     8
     Disability Exemption Value
    
    
     HISTAMOUNT
     Double
     8
     Historical Exemption Value
    
    
     HSTDAMOUNT
     Double
     8
     Homestead Exemption Value
    
    
     SNRAMOUNT
     Double
     8
     Senior Exemption Value
    
    
     WHLYAMOUNT
     Double
     8
     Wholly Exemption Value
    
    
     WIDAMOUNT
     Double
     8
     Widow Exemption Value
    
    
     WIDRAMOUNT
     Double
     8
     Widower Exemption Value
    
    
     BLDGCOUNT
     SmallInteger
     2
     Total Number of Buildings on Parcel
    
    
     MINBUILTY
     SmallInteger
     2
     Oldest Building Built
    
    
     MAXBUILTY
     SmallInteger
     2
     Newest Building Built
    
    
     TOTALAREA
     Double
     8
     Total Building Area
    
    
     HEATEDAREA
     Double
     8
     Total Heated Area
    
    
     MAXSTORIES
     Double
     8
     Tallest Building on Parcel
    
    
     BEDROOMS
     Integer
     4
     Total Number of Bedrooms
    
    
     BATHROOMS
     Double
     8
     Total Number of Bathrooms / Not For Comm
    
    
     GARAGE
     String
     1
     Garage on Property 'Y'
    
    
     CARPORT
     String
     1
     Carport on Property 'Y'
    
    
     POOL
     String
     1
     Pool on Property 'Y'
    
    
     BOATDOCK
     String
     1
     Boat Dock on Property 'Y'
    
    
     SEAWALL
     String
     1
     Sea Wall on Property 'Y'
    
    
     NBLDGCOUNT
     SmallInteger
     2
     Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
    
    
     NMINBUILTY
     SmallInteger
     2
     Oldest New Building Built
    
    
     NMAXBUILTY
     SmallInteger
     2
     Newest New Building Built
    
    
     NTOTALAREA
     Double
     8
     Total New Building Area
    
    
     NHEATEDARE
     Double
     8
     Total New Heated Area
    
    
     NMAXSTORIE
     Double
     8
     Tallest New Building on Parcel
    
    
     NBEDROOMS
     Integer
     4
     Total Number of New Bedrooms
    
    
     NBATHROOMS
     Double
     8
     Total Number of New Bathrooms/Not For Comm
    
    
     NGARAGE
     String
     1
     New Garage on Property 'Y'
    
    
     NCARPORT
     String
     1
     New Carport on Property 'Y'
    
    
     NPOOL
     String
     1
     New Pool on Property 'Y'
    
    
     NBOATDOCK
     String
     1
     New Boat Dock on Property 'Y'
    
    
     NSEAWALL
     String
     1
     New Sea Wall on Property 'Y'
    
    
     O_NAME
     String
     30
     Owner Name
    
    
     O_OTHERS
     String
     120
     Other Owners
    
    
     O_CAREOF
     String
     30
     In Care Of Line
    
    
     O_ADDR1
     String
     30
     Owner Mailing Address Line 1
    
    
     O_ADDR2
     String
     30
     Owner Mailing Address Line 2
    
    
     O_CITY
     String
     30
     Owner Mailing City
    
    
     O_STATE
     String
     2
     Owner Mailing State
    
    
     O_ZIP
     String
     9
     Owner Mailing Zip
    
    
     O_COUNTRY
     String
     30
     Owner Mailing Country
    
    
     S_1DATE
     Date
     8
     Most Current Sale Date > $100.00
    
    
     S_1AMOUNT
     Double
     8
     Sale Amount
    
    
     S_1VI
     String
     1
     Sale Vacant or Improved
    
    
     S_1TC
     String
     2
     Sale Transaction Code
    
    
     S_1TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_1OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_2DATE
     Date
     8
     Previous Sale Date > $100.00
    
    
     S_2AMOUNT
     Double
     8
     Sale Amount
    
    
     S_2VI
     String
     1
     Sale Vacant or Improved
    
    
     S_2TC
     String
     2
     Sale Transaction Code
    
    
     S_2TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_2OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_3DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_3AMOUNT
     Double
     8
     Sale Amount
    
    
     S_3VI
     String
     1
     Sale Vacant or Improved
    
    
     S_3TC
     String
     2
     Sale Transaction Code
    
    
     S_3TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_3OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_4DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_4AMOUNT
     Double
     8
     Sale Amount
    
    
     S_4VI
     String
     1
     Sale Vacant or Improved
    
    
     S_4TC
     String
     2
     Sale Transaction Code
    
    
     S_4TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_4OR_NUM
     String
     13
    
  3. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    fgdb, gpkg, html, shp, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  4. a

    Address Points Open Data

    • hub.arcgis.com
    • gis-portal-valleycounty.hub.arcgis.com
    Updated Aug 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valley County, Idaho GIS (2021). Address Points Open Data [Dataset]. https://hub.arcgis.com/datasets/2642f1c16bea46959026cef667556040
    Explore at:
    Dataset updated
    Aug 31, 2021
    Dataset authored and provided by
    Valley County, Idaho GIS
    Area covered
    Description

    COUNTY ADDRESSINGThis dataset represents officially documented Addresses in Valley County Idaho. The spatial data was originally created for Valley County Emergency Service and Response and location services but is used throughout the County and by the public for many purposes. Addresses are updated daily through the flow of information from the County Planning and Zoning department, as well as from the municipalities and Assessors office. Each municipality (i.e. Cascade, Donnelly, McCall) is responsible for maintaining and administering addressing within their impact areas.GOOGLE ADDRESSINGGoogle Maps is a subset of the Google Earth program, which focuses it's update energies more frequently on bigger cities and densely populated areas. In rural areas, such as Valley County, Google addressing updates are more sporadic and the frequency is unknown. However, Google address ranges and geocoding already provide a robust level of addressing meaning new homes on already-existing streets are more likely to be represented. When new streets and subdivisions are created, the updates may happen more slowly which is why many times throughout the year, Valley County IT sends address updates to Google through the Geo Data Upload portal to try and ensure that Google is up-to-date. To find out how you can update addresses within Google on your own, visit: Set or change your home & work addresses - Computer - Google Maps Help

  5. a

    GIS and Real Estate Data with Multiple Improvements (Records are Duplicated)...

    • opendata-jcc.opendata.arcgis.com
    Updated Mar 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James City County, VA (2019). GIS and Real Estate Data with Multiple Improvements (Records are Duplicated) [Dataset]. https://opendata-jcc.opendata.arcgis.com/items/656ff152344a427194ce01550c072a54
    Explore at:
    Dataset updated
    Mar 11, 2019
    Dataset authored and provided by
    James City County, VA
    Description

    James City County Data - Updated nightly IGNORE dates on this site.Combination of parcel information from the GIS/Mapping and the Real Estate departments.This table includes multiple improvements per parcel.Also download the GIS and Real Estate Data Field Descriptions.pdf file for a list of field descriptions.This data is updated every night

  6. Davis Station GIS Dataset update from various sources

    • researchdata.edu.au
    • data.aad.gov.au
    • +1more
    Updated Feb 16, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HARRIS, URSULA; Harris, U.; BENDER, ANGELA (2002). Davis Station GIS Dataset update from various sources [Dataset]. https://researchdata.edu.au/davis-station-gis-various-sources/700977
    Explore at:
    Dataset updated
    Feb 16, 2002
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    HARRIS, URSULA; Harris, U.; BENDER, ANGELA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1998 - Jul 3, 2013
    Area covered
    Description

    The Australian Antarctic Data Centre's Davis Station GIS data were originally mapped from aerial photography (February 11, 12 1997). Refer to the metadata record 'Davis Station GIS Dataset'.
    Since then various features have been added to these data as structures have been removed, moved or established. Some of these features have been surveyed. These surveys have metadata records from which the report describing the survey can be downloaded.
    However, the locations of other features have been obtained from a variety of sources.
    The data are included in the data available for download from a provided URL.
    The data conforms to the SCAR Feature Catalogue which includes data quality information. See a Related URL below.
    Data described by this metadata record has Dataset_id = 104.
    Each feature has a Qinfo number which, when entered at the 'Search datasets & quality' tab, provides data quality information for the feature.

  7. GIS Data Object Publishing instructions

    • catalog.data.gov
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). GIS Data Object Publishing instructions [Dataset]. https://catalog.data.gov/dataset/gis-data-object-publishing-instructions
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    Expands the use of internal data for creating Geographic Information System (GIS) maps. SSA's Database Systems division developed a map users guide for GIS data object publishing and was made available in an internal Sharepoint site for access throughout the agency. The guide acts as the reference for publishers of GIS objects across the life-cycle in our single, central geodatabase implementation.

  8. a

    Felix and Levi Capstone GIS Project WFL1

    • utahdnr.hub.arcgis.com
    Updated Mar 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Utah DNR Online Maps
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Last Update: 02/04/2025The statewide roads dataset is a multi-purpose statewide roads dataset for cartography and range based-address location. This dataset is also used as the base geometry for deriving the GIS-representation of UDOT's highway linear referencing system (LRS). A network analysis dataset for route-finding can also be derived from this dataset. This dataset utilizes a data model based on Next-Generation 911 standards and the Federal Highway Administration's All Roads Network Of Linear-referenced Data (ARNOLD) reporting requirements for state DOTs. UGRC adopted this data model on September 13th, 2017.The statewide roads dataset is maintained by UGRC in partnership with local governments, the Utah 911 Committee, and UDOT. This dataset is updated monthly with Davis, Salt Lake, Utah, Washington and Weber represented every month, along with additional counties based on an annual update schedule. UGRC obtains the data from the authoritative data source (typically county agencies), projects the data and attributes into the current data model, spatially assigns polygon-based fields based on the appropriate SGID boundary, and then standardizes the attribute values to ensure statewide consistency. UGRC also generates a UNIQUE_ID field based on the segment's location in the US National Grid, with the street name then tacked on. The UNIQUE_ID field is static and is UGRC's current, ad hoc solution to a persistent global id. More information about the data model can be found here: https://docs.google.com/spreadsheets/d/1jQ_JuRIEtzxj60F0FAGmdu5JrFpfYBbSt3YzzCjxpfI/edit#gid=811360546 More information about the data model transition can be found here: https://gis.utah.gov/major-updates-coming-to-roads-data-model/We are currently working with US Forest Service to improve the Forest Service roads in this dataset, however, for the most up-to-date and complete set of USFS roads, please visit their data portal where you can download the "National Forest System Roads" dataset.More information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/transportation/roads-system/

  9. s

    Hamilton GIS Data update

    • geo2.scholarsportal.info
    Updated Mar 11, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). Hamilton GIS Data update [Dataset]. http://geo2.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/UT/1020.xml&show_as_standalone=true
    Explore at:
    Dataset updated
    Mar 11, 2010
    Time period covered
    Jan 1, 2010
    Area covered
    Description

    Sewers; Cemeteries; Business Improvement Areas; sidewalks; escarpment; DTM 10 metres; DTM 20 metres; water hydrants; police stations; libraries; colleges; universities; beaches; arenas; sewers; transit; wards; shoreline; parking lots; land use, etc.

  10. d

    California Land Ownership

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). California Land Ownership [Dataset]. https://catalog.data.gov/dataset/california-land-ownership-b6394
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    CAL FIRE
    Area covered
    California
    Description

    This dataset was updated April, 2024.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes: Clipping input datasets to the California boundary Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.Data Sources: GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.htmlData Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  11. d

    New Jersey StreamStats digital elevation, flow direction, and flow...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). New Jersey StreamStats digital elevation, flow direction, and flow accumulation GIS data 2022 [Dataset]. https://catalog.data.gov/dataset/new-jersey-streamstats-digital-elevation-flow-direction-and-flow-accumulation-gis-data-202
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    New Jersey
    Description

    The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection (NJDEP), prepared hydro-conditioned geographic information systems (GIS) data layers for use in the updated New Jersey StreamStats 2022 application (U.S. Geological Survey, 2022). This update features improvements in base-elevation resolution from 10 meters to 10 feet and stream centerline hydrography from 1:24,000 to 1:2,400 scale. Hydro conditioning is the process of burning single-line stream centerlines at the 1:2,400 scale into a digital elevation model to produce flow direction and flow accumulation grids. This data release contains raster digital datasets for a 10-foot digital elevation model, a flow direction grid, and a flow accumulation grid for the updated New Jersey Streamstats 2022 application. The eleven 8-digit Hydrologic Unit Codes (HUCs) represented by this dataset are 02020007, 02030103, 02030104, 02030105, 02040104, 02040105, 02040201, 02040202, 02040206, 02040301, and 02040302 (U.S. Geological Survey, 2016). The updated New Jersey StreamStats 2022 application provides access to spatial analytical tools that are useful for water-resources planning and management, as well as engineering and design purposes. The map-based user interface can be used to delineate drainage areas, determine basin characteristics, and estimate flow statistics, including instantaneous flood discharge, monthly flow-duration, and monthly low-flow frequency statistics for ungaged streams. References cited: U.S. Geological Survey, 2016, National Hydrography: U.S. Geological Survey, accessed February 4, 2022, at https://www.usgs.gov/national-hydrography. U.S. Geological Survey, 2022, StreamStats v4.6.2: U.S. Geological Survey, accessed February 4, 2022, at https://streamstats.usgs.gov/ss/.

  12. M

    Parcels, Compiled from Opt-In Open Data Counties, Minnesota

    • gisdata.mn.gov
    fgdb, gpkg, html +2
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Parcels, Compiled from Opt-In Open Data Counties, Minnesota [Dataset]. https://gisdata.mn.gov/dataset/plan-parcels-open
    Explore at:
    html, webapp, jpeg, fgdb, gpkgAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.

    It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.

    If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.

    County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.

    This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.

    There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.

    The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.

    DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.

  13. a

    HLA Blocks Update

    • hlplanning.hub.arcgis.com
    Updated Jan 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Houseal Lavigne (2021). HLA Blocks Update [Dataset]. https://hlplanning.hub.arcgis.com/maps/hlplanning::hla-blocks-update-1
    Explore at:
    Dataset updated
    Jan 13, 2021
    Dataset authored and provided by
    Houseal Lavigne
    Area covered
    Description

    OBJECTID: System-generated unique identifier for each record within the feature classGEODBID: Three-digit code that assigns editing responsibility to a community in the GIS ConsortiumFEATUREID: GIS-Consortium-generated unique identifier for each record within the feature class. All FEATUREIDs start with the GEODBID of the community that owns the record.DATECREATED: Date/time stamp from the moment the GIS record was created DATEMODIFIED: Date/time stamp from the last moment the GIS record was changed SOURCE: Organization that provided the data. The GIS Consortium standard is to preface the source with the three-letter municipal code of the community providing the data, followed by a dash. Example: VGV-Public WorksSOURCETYPE: Accuracy context for the recordPIN: Unique numerical code for the description of a piece of land; parcel identification numberGlobalID: System-generated unique identifier for each record that is required in replicated geodatabasesPRODUCTIONNOTES: Technical notes from GIS personnelREPLICAFILTER: Code used to filter data for the creation of custom geodatabasesSHAPE: System-generated geometry type of the featureSHAPE.area: System-generated area of the featureSHAPE.len: System-generated length of the feature

  14. d

    April 2025 GIS Office Newsletter

    • catalog.data.gov
    • data.ct.gov
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2025). April 2025 GIS Office Newsletter [Dataset]. https://catalog.data.gov/dataset/april-2025-gis-office-newsletter
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    State of Connecticut
    Description

    The February 2025 issue of the GIS Office Newsletter features updates about the GIS Office, a summary of the most recent GIS Advisory Council meeting, GIS resources, and more.

  15. California Overlapping Cities and Counties and Identifiers with Coastal...

    • data.ca.gov
    • gis.data.ca.gov
    • +1more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California Overlapping Cities and Counties and Identifiers with Coastal Buffers [Dataset]. https://data.ca.gov/dataset/california-overlapping-cities-and-counties-and-identifiers-with-coastal-buffers
    Explore at:
    kml, gdb, zip, gpkg, xlsx, arcgis geoservices rest api, geojson, csv, txt, htmlAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:

    • Metadata is missing or incomplete for some layers at this time and will be continuously improved.
    • We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.
    This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose

    County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. Place Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places (Coming Soon)
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system
    • Place Name: CDTFA incorporated (city) or county name
    • County: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information System
    • Place Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area names
    • CNTY Abbr: CalTrans Division of Local Assistance abbreviations of county names
    • Area_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Accuracy

    CDTFA"s source data notes the following about accuracy:

    City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated

  16. U

    Compilation of Geospatial Data (GIS) for the Mineral Industries and Related...

    • data.usgs.gov
    • catalog.data.gov
    Updated Jul 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom (2024). Compilation of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Select Countries in Southwest Asia [Dataset]. http://doi.org/10.5066/P9OCRYYO
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 30, 2021
    Area covered
    Asia, West Asia
    Description

    The U.S. Geological Survey (USGS) has compiled a geodatabase containing mineral-related geospatial data for 10 countries of interest in Southwest Asia (area of study): Afghanistan, Cambodia, Laos, India, Indonesia, Iran, Nepal, North Korea, Pakistan, and Thailand. The data can be used in analyses of the extractive fuel and nonfuel mineral industries and related economic and physical infrastructure integral for the successful operation of the mineral industries within the area of study as well as the movement of mineral products across domestic and global markets. This geodatabase reflects the USGS ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports for the countries in the area of study. The geodatabase contains data feat ...

  17. d

    Zoning GIS Data: Shapefile

    • datasets.ai
    • data.amerigeoss.org
    • +1more
    23, 25, 57, 8
    Updated Aug 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of New York (2024). Zoning GIS Data: Shapefile [Dataset]. https://datasets.ai/datasets/zoning-gis-data-shapefile
    Explore at:
    23, 8, 25, 57Available download formats
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    City of New York
    Description

    GIS data: This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.

    All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

    Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-gis-zoning.page to utilize this data in the meantime

  18. l

    Park Needs Assessment Plus - GIS Layers

    • geohub.lacity.org
    • data.lacounty.gov
    • +2more
    Updated Dec 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Park Needs Assessment Plus - GIS Layers [Dataset]. https://geohub.lacity.org/maps/94326d2245334a0da21a9595cfd7863a
    Explore at:
    Dataset updated
    Dec 22, 2022
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    On December 6, 2022, the Los Angeles County Board of Supervisors (BOS) adopted the 2022 Countywide Parks Needs Assessment Plus (PNA+) Final Report. Consistent with this Board action, DPR is making GIS data from the PNA+ available to the public here. Composite layers include:Regional Study AreasRural Study AreasRegional Site InventoryLocal ParksBeachesCountywide TrailsTrailheads and Access PointsPriority Areas for Increasing Access to Regional RecreationPriority Areas for Increasing Access to Rural RecreationPriority Area for Environmental RestorationEnvironmental BenefitsEnvironmental BurdensComposite Population VulnerabilityNote that all data sources in the web map are courtesy of the Los Angeles County Department of Parks and Recreation (DPR). If you'd like to learn more about the data and analysis used in the PNA+, visit https://lacountyparkneeds.org/pnaplus-report/.

    DISCLAIMER: The data herein is for informational purposes, and may not have been prepared for or be suitable for legal, engineering, or surveying intents. The County of Los Angeles reserves the right to change, restrict, or discontinue access at any time. All users of the maps and data presented on https://lacounty.maps.arcgis.com or deriving from any LA County REST URLs agree to the "Terms of Use" outlined on the County of LA Enterprise GIS (eGIS) Hub (https://egis-lacounty.hub.arcgis.com/pages/terms-of-use).

  19. n

    Macquarie Island GIS data update from various sources

    • cmr.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    cfm
    Updated Apr 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Macquarie Island GIS data update from various sources [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214313625-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Apr 26, 2017
    Time period covered
    Jun 1, 1997 - May 31, 2012
    Area covered
    Description

    This dataset is comprised of data that contributes to the Australian Antarctic Data Centre's geographic data of Macquarie Island but is not part of a larger dataset. Data sources include GPS surveys, sketches on maps and advice from Australian Antarctic Division and Tasmanian Parks and Wildlife Service personnel. Data in this dataset has Dataset ID 81 and is included in the the Australian Antarctic Data Centre's geographic data of Macquarie Island available for download (see Related URLs below). The original data provided to the Australian Antarctic Data Centre may also be available for download (see Related URLs below).

  20. s

    Timor-Leste 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Timor-Leste 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00272
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Timor-Leste
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri's Hydrology Team (2013). 2013: Web GIS Overview and Update [Dataset]. https://anrgeodata.vermont.gov/documents/3eb9a132340f433b87b330eac6c32b4d
Organization logo

2013: Web GIS Overview and Update

Explore at:
Dataset updated
Jul 26, 2013
Dataset provided by
Esrihttp://esri.com/
Authors
Esri's Hydrology Team
Description

ArcGIS is a platform, and the platform is extending to the web. ArcGIS Online offers shared content, and has become a living atlas of the world. Ready-to-use curated content is published by Esri, Partners, and Users, and Esri is getting the ball rolling by offering authoritative data layers and tools.Specifically for Natural Resources data, Esri is offering foundational data useful for biogeographic analysis, natural resource management, land use planning and conservation. Some of the layers available are Land Cover, Wilderness Areas, Soils Range Production, Soils Frost Free Days, Watershed Delineation, Slope. The layers are available as Image Services that are analysis-ready and Geoprocessing Services that extract data for download and perform analysis.We've made large strides with online analysis. The latest release of ArcGIS Online's map viewer allows you to perform analysis on ArcGIS Online. Some of the currently available analysis tools are Find Hot Spots, Create Buffers, Summarize Within, Summarize Nearby. In addition, we've created Ready-to-use Esri hosted analysis tools that run on Esri hosted data. These are in Beta, and they include Watershed Delineation, Viewshed, Profile, and Summarize Elevation.

Search
Clear search
Close search
Google apps
Main menu