Facebook
TwitterAgenda outline for GIS Users Meeting January 16, 2019.
Facebook
TwitterFinancial overview and grant giving statistics of Northwest Gis User Group Inc.
Facebook
TwitterThe GIS USERS OF NORTHERN OHIO is one of the nation's longest running geospatial user groups. We have been meeting since the early 1990's, roughly six times a year. Before Covid-19, we met at the Canalway Centerlocated in the Cleveland Metroparks' Ohio & Erie Canal Reservation. Starting at 1:00 enjoy coffee, snacks and networking. Presentations kickoff at 1:30. The day of the week is rotated so as to not exclude anyone due to their particular scheduling needs. Our longevity is due in part to the informal structure we ascribe to. No dues, minutes or reservations required. Just show up, sign in and learn!
Facebook
Twitter
Facebook
Twitterhttps://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The global geographic information system (GIS) market size reached USD 14.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 37.1 Billion by 2033, exhibiting a growth rate (CAGR) of 11.1% during 2025-2033. The increasing demand for advanced solutions across the transportation, real estate, military, and agriculture sectors represents one of the primary factors bolstering the market.
|
Report Attribute
|
Key Statistics
|
|---|---|
|
Base Year
|
2024
|
|
Forecast Years
|
2025-2033
|
|
Historical Years
|
2019-2024
|
|
Market Size in 2024
| USD 14.4 Billion |
|
Market Forecast in 2033
| USD 37.1 Billion |
| Market Growth Rate 2025-2033 | 11.1% |
IMARC Group provides an analysis of the key trends in each segment of the market, along with the geographic information system market forecast at the global, regional, and country levels for 2025-2033. Our report has categorized the market based on the component, function, device, and end use industry.
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (focr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (focr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (focr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Tennessee, Tectonics and Structural Geology Research Group. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (focr_bedrock_geology_metadata.txt or focr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterGIS in the age of community health (Learn ArcGIS Path). Arm yourself with hands-on skills and knowledge of how GIS tools can analyze health data and better understand diseases.
Facebook
TwitterThe Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Geographic Information System (GIS) Tools market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Firstly, the increasing adoption of cloud-based GIS solutions offers scalability, cost-effectiveness, and improved accessibility for businesses of all sizes, particularly SMEs seeking efficient resource management. Secondly, the rising demand for precise location-based data analysis across diverse sectors like urban planning, environmental monitoring, and precision agriculture fuels market growth. Furthermore, technological advancements, including the integration of AI and machine learning capabilities within GIS platforms, enhance analytical power and facilitate more sophisticated spatial decision-making. Finally, government initiatives promoting smart cities and digital transformation worldwide further stimulate market expansion. The market is segmented by application (SMEs, Large Enterprises) and type (Cloud-Based, On-Premises), reflecting the diverse needs of various user groups. Large enterprises, with their extensive spatial data requirements and resources, are expected to drive significant market share, while cloud-based solutions are poised for faster growth due to their flexible deployment models. The regional landscape reveals a dynamic distribution of market share. North America, particularly the United States, holds a prominent position, driven by high technological adoption rates and the presence of major GIS solution providers. Europe follows closely, fueled by increasing government investments in infrastructure development and digitalization initiatives. The Asia-Pacific region is expected to experience significant growth, propelled by rapid urbanization and the expanding adoption of GIS technologies in developing economies like China and India. While the on-premises segment currently dominates, the cloud-based segment is anticipated to exhibit higher growth in the forecast period, driven by its inherent advantages in scalability, accessibility, and cost-efficiency. Competitive dynamics are shaped by both established players like IBM TRIRIGA and emerging technology companies, leading to innovation and diversification of GIS tool offerings. The market's future hinges on continuous technological innovation, the growing adoption of location intelligence across sectors, and the expansion of robust infrastructure supporting data accessibility and management.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature class was created by exporting the Census Block Group features from the 2020 TIGER/Line Geodatabase.TIGER Geodatabases are spatial extracts from the Census Bureau’s MAF/TIGER database. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The cloud gis market size will grow up to $ 690.39 mn at a CAGR of 14% during 2021-2025.
This cloud gis market analysis report entails exhaustive statistical qualitative and quantitative data on End-user (Government, Public safety, Transportation, Business, and Others) and Geography (North America, APAC, Europe, MEA, and South America) and their contribution to the target market. View our sample report to gather market insights on the segmentations. Furthermore, with the latest key findings on the post COVID-19 impact on the market, available in this report, you can create successful business strategies to generate new sales opportunities.
What will the Cloud GIS Market Size be in 2021?
Browse TOC and LoE with selected illustrations and example pages of Cloud GIS Market
Get Your FREE Sample Now!
Cloud GIS Market: Key Drivers and Trends
According to our research output, there has been a neutral impact on the market growth post COVID-19 era. Key drivers such as the rising popularity of cloud gis due to ease in data accessibility are notably supporting the cloud gis market growth. On the other hand, factors such as threat of security have been identified as market challenges that limit the growth of market vendors. This report offers detailed insights on the challenges to stay prepared for the obstacles in the future, which will help companies analyze and develop growth strategies.
This post-pandemic cloud gis market report has assessed the shift in consumer behavior and identified trends and drivers that will help market players outmaneuver challenges. Technology innovations, implementation, and improvisation scope identified in the cloud gis market trends is essential for building new business opportunities across segmentations and geographies.
Who are the Major Cloud GIS Market Vendors?
The cloud gis market forecast report provides insights on complete key vendor profiles and their business strategies to reimage themselves. The profiles covered in the report are as follows:
AmigoCloud Inc. Blue Marble Geographics Caliper Corp. Computer Aided Development Corp. Ltd. Environmental Systems Research Institute Inc. GIS Cloud Ltd. HERE Global BV Hexagon AB Mapbox Inc. Pitney Bowes Inc.
The cloud gis market is fragmented and the vendors are deploying various organic and inorganic growth strategies to compete in the market. Click here to uncover other successful business strategies deployed by the vendors.
Furthermore, our research experts have outlined the magnitude of the economic impact on each segment and recovery expectations post pandemic. To recover from post COVID-19 impact, market vendors should create strategies to grab business opportunities from the fast-growing segments, while refining their scope of growth in the slow-growing ones.
For insights on complete key vendor profiles, download a free sample of the cloud gis market forecast report. The profiles include information on the production, sustainability, and prospects of the leading companies. The report's vendor landscape section also provides industry risk assessment in terms of labor cost, raw material price fluctuation, and other parameters, which is crucial for effective business planning.
Which are the Key Regions for Cloud GIS Market?
For more insights on the market share of various regions Request for a FREE sample now!
The cloud gis market size, share, & trends analysis report offers an up-to-date study of the geographical composition of the market. 40% of the market’s growth will originate from North America during the forecast period. US, China, Japan, Germany, and Canada are the key markets for cloud gis market in North America.
North America has been recording significant growth rate and is expected to offer several growth opportunities to market vendors during the forecast period. Easy distribution of data has been identified as one of the chief factors that will drive the cloud gis market growth in North America over the forecast period. To garner further competitive intelligence and regional opportunities in store for vendors, view our sample report.
What are the Revenue-generating End-user Segments in the Cloud GIS Market?
To gain further insights on the market contribution of various segments Request for a FREE sample!
The cloud gis market share growth by the _ segment has been significant. The cloud gis market report provides comprehensive understanding of the subsegments of the target market to identify niche customer groups and demographic requirements. Furthermore, the report provides insights on the impact of COVID-19 on market segments, which can be used to deduce transformation patterns in consumer behavior in the coming years and improvise business plans.
This report provides an accurate prediction of the contribution of all the segments to the growth of the cloud gis market size. Request for a free sample of the report to get an exclusive glimps
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The GIS market share in EMEA is expected to increase to USD 2.01 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 8.23%.
This EMEA GIS market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers GIS market in EMEA segmentation by:
Component - Software, data, and services
End-user - Government, utilities, military, telecommunication, and others
What will the GIS Market Size in EMEA be During the Forecast Period?
Download the Free Report Sample to Unlock the GIS Market Size in EMEA for the Forecast Period and Other Important Statistics
The EMEA GIS market report also offers information on several market vendors, including arxiT SA, Autodesk Inc., Bentley Systems Inc., Cimtex International, CNIM SA, Computer Aided Development Corp. Ltd., Environmental Systems Research Institute Inc., Fugro NV, General Electric Co., HERE Global BV, Hexagon AB, Hi-Target, Mapbox Inc., Maxar Technologies Inc., Pitney Bowes Inc., PSI Services LLC, Rolta India Ltd., SNC Lavalin Group Inc., SuperMap Software Co. Ltd., Takor Group Ltd., and Trimble Inc. among others.
GIS Market in EMEA: Key Drivers, Trends, and Challenges
The integration of BIM and GIS is notably driving the GIS market growth in EMEA, although factors such as data viability and risk of intrusion may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the GIS industry in EMEA. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.
Key GIS Market Driver in EMEA
One of the key factors driving the geographic information system (GIS) market growth in EMEA is the integration of BIM and GIS. A GIS adds value to BIM by visualizing and analyzing the data with regard to the buildings and surrounding features, such as environmental and demographic information. BIM data and workflows include information regarding sensors and the placement of devices in IoT-connected networks. For instance, Dubai's Civil Defense Department has integrated GIS data with its automatic fire surveillance system. This information is provided in a matter of seconds on the building monitoring systems of the Civil Defense Department. Furthermore, location-based services offered by GIS providers help generate huge volumes of data from stationary and moving devices and enable users to perform real-time spatial analytics and derive useful geographic insights from it. Owing to the advantages associated with the integration of BIM with GIS solutions, the demand for GIS solutions is expected to increase during the forecast period.
Key GIS Market Challenge in EMEA
One of the key challenges to the is the GIS market growth in EMEA is the data viability and risk of intrusion. Hackers can hack into these systems with malicious intentions and manipulate the data, which could have destructive or negative repercussions. Such hacking of data could cause nationwide chaos. For instance, if a hacker manipulated the traffic management database, massive traffic jams and accidents could result. If a hacker obtained access to the database of a national disaster management organization and manipulated the data to create a false disaster situation, it could lead to a panic situation. Therefore, the security infrastructure accompanying the implementation of GIS software solutions must be robust. Such security threats may impede market growth in the coming years.
Key GIS Market Trend in EMEA
Integration of augmented reality (AR) and GIS is one of the key geographic information system market trends in EMEA that is expected to impact the industry positively in the forecast period. AR apps could provide GIS content to professional end-users and aid them in making decisions on-site, using advanced and reliable information available on their mobile devices and smartphones. For instance, when the user simply points the camera of the phone at the ground, the application will be able to show the user the location and orientation of water pipes and electric cables that are concealed underground. Organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) are seeking investments and are open to sponsors for an upcoming AR pilot project, which seeks to advance the standards of AR technology at both respective organizations. Such factors will further support the market growth in the coming years.
This GIS market in EMEA analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2022-202
Facebook
TwitterThis is an Allegheny County extract of the 2016 US Census Block Groups downloaded from the following website: https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Civic Vitality and Governance Organization: Allegheny County Department: Geographic Information Systems Group; Department of Administrative Services Temporal Coverage: 2016 Data Notes: Coordinate System: GCS_North_American_1983 Development Notes: none Other: none Related Document(s): Data Dictionary (https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2016/TGRSHP2016_TechDoc_Ch3.pdf) Frequency - Data Change: 2016 data Frequency - Publishing: one-time Data Steward Name: See https://www.census.gov/geo/about/contact.html for more information. Data Steward Email: See https://www.census.gov/geo/about/contact.html for more information.
Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Census Block Groups data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain block group boundaries with associated Census and American Community Survey demographic data.
Facebook
TwitterThe data release for geologic maps of Ravalli Group and other Mesoproterozoic Belt Supergroup strata in northern Idaho and northwestern Montana is a digital, Geologic Map Schema (GeMS)-compliant version of maps published in U.S. Geological Survey (USGS) Open-File Report 2001-438 (Boleneus and others, 2001). The new digital data include attribute tables and geospatial features (points, lines, and polygons) in the format that meets GeMS requirements. This data release presents the geologic maps as shown on the plates and captured in geospatial data for the published maps. The database represents the geology for the 2.7 million acre, geologically complex study area in eleven plates at a publication scale of 1:48,000, and two plates at a publication scale of 1:12,000. The maps cover primarily Sanders, Shoshone, Kootenai, and Lincoln Counties, but also include minor parts of Benewah and Bonner Counties. Geologic mapping was undertaken between 1979 and 1984 by ASARCO Inc. as part of their program to explore for sediment-hosted stratiform copper deposits in northern Idaho and western Montana. Geologic mapping was primarily focused on formations of the Ravalli Group, which resulted in large unmapped areas within the map boundary. In 2001 maps were scanned, georeferenced, and published by USGS (Boleneus and others, 2001). Boleneus, D.E., Applegate, L.M., Joseph, N.L., and Brandt, T.R., 2001, Raster Images of Geologic Maps of Middle Proterozoic Belt strata in parts of Benewah, Bonner, Kootenai and Shoshone Counties, Idaho and Lincoln, Mineral and Sanders Counties, Montana: U.S. Geological Survey Open-File Report OF-2001-438, scales 1:48,000 and 1:12,000, https://doi.org/10.3133/ofr2001438.
Facebook
Twitter[Metadata] 2010 Census Block Groups. Source: US Census Bureau.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/blkgrp10.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterAreas where volunteer groups operate within Fairfax County. The volunteer groups (also known as Community Based Organizations) are non-profit organizations that provide basic needs assistance to specific areas of the county. The groups work together to define their boundaries, often utilizing ZIP code boundaries for their edges. Some of the service areas overlap.
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Facebook
TwitterParcels classified by land use group. MPROP documentation: http://itmdapps.milwaukee.gov/gis/mprop/Documentation/mprop.pdf
Facebook
TwitterThe San Francisco Bay Conservation and Development Commission Adapting to Rising Tides Program developed a dataset to better understand community vulnerability to current and future flooding due to sea level rise and storm surges. This data has been used in the Adapting To Rising Tides Bay Area Sea Level Rise Vulnerability and Assessment project as well as helping inform the implementation of the BCDC Environmental Justice and Social Equity Bay Plan amendment. The community vulnerability dataset contains four categories of information: 1. Social Vulnerability Indicators: Certain socioeconomic characteristics may reduce ability to prepare for, respond to, or recover from a hazard event. Census block groups with high concentrations (relative to the nine county Bay Area) of these characteristics are flagged as socially vulnerable, with each block group assigned a rank of highest, high, moderate, and low. Data is currently from American Community Survey (ACS) 2018 5-year estimates but is anticipated to be updated as new ACS 5-year estimates become available. 2. Contamination Vulnerability Indicators: The presence of contaminated lands and water raises health and environmental justice concerns, which worsen with flooding and sea level rise. A rank of highest, high, moderate, and lower for the severity of contamination in each block group was calculated using data compiled by CalEPA Office of Environmental Health Hazard Assessment (OEHHA) for use in CalEnviroScreen 3.0. 3. Residential Exposure to Sea Level Rise: Calculated by joining Metropolitan Transportation Commission 2010 residential parcel data with 2017 ART Bay Area Sea Level Rise and Shoreline Analysis data, FEMA 100 and 500 year flood zone data, and San Francisco 100-year precipitation data to generate the number of residential units exposed at each water level summed by block group. This methodology assumes that once a parcel is exposed to any amount of flooding, the entire number of residential units within that parcel are considered impacted. 4. Complementary Community Vulnerability Screening Tools: Many screening approaches exist to characterize disadvantaged or vulnerable communities. Often in the Bay Area, different designations of disadvantaged/vulnerable communities are located in the same area. It is recommended to use the ART approach in combination with other complementary tools and designations. The following are included in this shapefile as fields for cross-referencing: CalEnviroScreen 3.0 total score, Metropolitan Transportation Commission Community of Concern designation, UC Berkeley Displacement and Gentrification Typologies.Data and resources can be accessed at https://www.bcdc.ca.gov/data/community.html. For information about data development and access please review the Community Vulnerability User Guide and BCDC’s Github Repository. For additional descriptions of GIS methods used in ART Bay Area, please see the ART Bay Area Report Appendix: GIS Data and Methods. For more information, please contact GIS@bcdc.ca.gov.
Facebook
TwitterAgenda outline for GIS Users Meeting January 16, 2019.