100+ datasets found
  1. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. Z

    ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gillreath-Brown, Andrew; Nagaoka, Lisa; Wolverton, Steve (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2572017
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Department of Anthropology, Washington State University
    Department of Geography and the Environment, University of North Texas
    Authors
    Gillreath-Brown, Andrew; Nagaoka, Lisa; Wolverton, Steve
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    Raw DEM and Soils data

    Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)

    DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.

    DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.

    Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)

    Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).

    Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).

    ArcGIS Map Packages

    Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).

    Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.

    Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).

    Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web

  4. d

    Data from: Introduction to Planetary Image Analysis and Geologic Mapping in...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  5. Median Type TDA

    • gis-fdot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Jul 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Median Type TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/median-type-tda
    Explore at:
    Dataset updated
    Jul 20, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT GIS Roads with Median Types feature class provides spatial information on Florida Median Types distinguishing between lawn, paved, painted, and curbed medians. It also notes where a fence, guardrail, or barrier wall divides the two sides of a divided road. A median is defined as a barrier or other physical separation between two lanes of traffic traveling in opposite directions, which can either be raised, painted, or paved. This information is required for all functionally classified roadways On or Off the SHS. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 11/08/2025.For more details please review the FDOT RCI Handbook Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/median_type.zip

  6. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  7. M

    DNR Toolbox for ArcGIS 10

    • gisdata.mn.gov
    • data.wu.ac.at
    esri_toolbox
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2024). DNR Toolbox for ArcGIS 10 [Dataset]. https://gisdata.mn.gov/dataset/dnr-arcgis-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    May 25, 2024
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.

    If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.

    Toolsets included in MNDNR Tools V10:
    - Analysis Tools
    - Conversion Tools
    - Division Tools
    - General Tools
    - Hydrology Tools
    - LiDAR and DEM Tools
    - Raster Tools
    - Sampling Tools

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  8. OpenStreetMap (Blueprint)

    • noveladata.com
    • datasets.ai
    • +14more
    Updated Jan 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). OpenStreetMap (Blueprint) [Dataset]. https://www.noveladata.com/maps/45a1aeaff6c649a688163701297c592a
    Explore at:
    Dataset updated
    Jan 30, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  9. Focus on Geodatabases in ArcGIS Pro

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Focus on Geodatabases in ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/focus-on-geodatabases-in-arcgis-pro
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform.Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.AUDIENCEProfessional and scholarly.AUTHOR BIODavid W. Allen has been working in the GIS field for over 35 years, the last 30 with the City of Euless, Texas, and has seen many versions of ArcInfo and ArcGIS come along since he started with version 5. He spent 18 years as an adjunct professor at Tarrant County College in Fort Worth, Texas, and now serves as the State Director of Operations for a volunteer emergency response group developing databases and templates. Mr. Allen is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2016).Pub Date: Print: 6/17/2019 Digital: 4/29/2019 Format: PaperbackISBN: Print: 9781589484450 Digital: 9781589484467 Trim: 7.5 x 9.25 in.Price: Print: $59.99 USD Digital: $59.99 USD Pages: 260

  10. Esri Community Maps AOIs

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Community Maps AOIs [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/12431f51f19e4d2582eefcdc76392f87
    Explore at:
    Dataset updated
    Feb 2, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.

  11. Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI, MACA, RHOD digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Klemic (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-rhoda-quadrangle-kentucky-nps-grd-gri-maca-rhod-digital-ma
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Kentucky, United States
    Description

    The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  13. Z

    Data from: The application of unmanned aerial vehicle (UAV) surveys and GIS...

    • data.niaid.nih.gov
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomczyk, Aleksandra M.; Ewertowski, Marek W.; Creany, Noah; Ancin-Murguzur, Francisco Javier; Monz, Christopher (2023). The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions - dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8303439
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    The Arctic Sustainability Lab, Faculty of Biosciences Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
    Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
    Department of Environment and Society, Utah State University, Logan, Utah
    Authors
    Tomczyk, Aleksandra M.; Ewertowski, Marek W.; Creany, Noah; Ancin-Murguzur, Francisco Javier; Monz, Christopher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data used to test the protocol for high-resolution mapping and monitoring of recreational impacts in protected natural areas (PNAs) using unmanned aerial vehicle (UAV) surveys, Structure-from-Motion (SfM) data processing and geographic information systems (GIS) analysis to derive spatially coherent information about trail conditions (Tomczyk et al., 2023). Dataset includes the following folders:

    Cocora_raster_data (~3GB) and Vinicunca_raster_data (~32GB) - a very high-resolution (cm-scale) dataset derived from UAV-generated images. Data covers selected recreational trails in Colombia (Valle de Cocora) and Peru (Vinicunca). UAV-captured images were processed using the structure-from-motion approach in Agisoft Metashape software. Data are available as GeoTIFF files in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru). Individual files are named as follows [location]_[year]_[product]_[raster cell size].tif, where:

    [location] is the place of data collection (e.g., Cocora, Vinicucna)

    [year] is the year of data collection (e.g., 2023)

    [product] is the tape of files: DEM = digital elevation model; ortho = orthomosaic; hs = hillshade

    [raster cell size] is the dimension of individual raster cell in mm (e.g., 15mm)

    Cocora_vector_data. and Vinicunca_vector_data – mapping of trail tread and conditions in GIS environment (ArcPro). Data are available as shp files. Data are in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru).

    Structure-from-motio n processing was performed in Agisoft Metashape (https://www.agisoft.com/, Agisoft, 2023). Mapping was performed in ArcGIS Pro (https://www.esri.com/en-us/arcgis/about-arcgis/overview, Esri, 2022). Data can be used in any GIS software, including commercial (e.g. ArcGIS) or open source (e.g. QGIS).

    Tomczyk, A. M., Ewertowski, M. W., Creany, N., Monz, C. A., & Ancin-Murguzur, F. J. (2023). The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions. International Journal of Applied Earth Observations and Geoinformation, 103474. doi: https://doi.org/10.1016/j.jag.2023.103474

  14. f

    Geomorphology model (ArcGIS Pro version), input datasets and legend...

    • uvaauas.figshare.com
    • data.niaid.nih.gov
    zip
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Geomorphology model (ArcGIS Pro version), input datasets and legend symbology files [Dataset]. http://doi.org/10.21942/uva.13693702.v20
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.

  15. a

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • arcticdata.io
    • search.dataone.org
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://arcticdata.io/catalog/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  16. Shawnee National Forest Geospatial Data

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Forest Service (2025). Shawnee National Forest Geospatial Data [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Shawnee_National_Forest_Geospatial_Data/24661920
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    USDA Forest Service
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    GIS data is available on the Forest’s FTP site in the form of “shape files” or layers and is available free for downloading. To utilize these data layers you will need a program that uses the Geographic Information System (GIS) such as ESRI’s ArcMap, ArcView or the free map reading program ArcGIS Explorer. ArcGIS Explorer has tools that let you zoom in/out, print the map, and query data. It also has map tips to identify features, and a help menu. ArcGIS Explorer is available as a free download from the ESRI website. Included is a list of GIS data files available for the Shawnee National Forest. These GIS data files are updated on a continuing basis. It should be noted that this data may have been developed from sources of differing accuracy, accurate only at certain scales, based on modeling or interpretation, or incomplete while being created or revised. Overall accuracy, completeness and timeliness may vary. The following geospatial information/data was prepared by the Shawnee National Forests (US Forest Service). The Forest Service reserves the right to correct, update, modify or replace GIS data without notification. Resources in this dataset:Resource Title: Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/shawnee/landmanagement/gis Information about the geospatial data and a ftp link to download Forest GIS Data Shapefiles.

  17. c

    California Land Ownership

    • gis.data.cnra.ca.gov
    • data.cnra.ca.gov
    • +8more
    Updated Sep 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Forestry and Fire Protection (2019). California Land Ownership [Dataset]. https://gis.data.cnra.ca.gov/datasets/CALFIRE-Forestry::california-land-ownership
    Explore at:
    Dataset updated
    Sep 14, 2019
    Dataset authored and provided by
    California Department of Forestry and Fire Protection
    Area covered
    Description

    This dataset was updated May, 2025.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes:* Clipping input datasets to the California boundary* Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc)* Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California.* Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only.* Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs)* In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD* As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset. Data Sources:* GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf* US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore* Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases* Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov* Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.html Data Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.25_1: The CPAD Input dataset was amended to merge large gaps in certain areas of the state known to be erroneous, such as Yosemite National Park, and to eliminate overlaps from the original input. The FWS input dataset was updated in February of 2025, and the DOD input dataset was updated in October of 2024. The BIA input dataset was the same as was used for the previous ownership version.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  18. D

    Grid Garage ArcGIS Toolbox

    • data.nsw.gov.au
    • researchdata.edu.au
    pdf, url, zip
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2025). Grid Garage ArcGIS Toolbox [Dataset]. https://data.nsw.gov.au/data/dataset/grid-garage-arcgis-toolbox
    Explore at:
    pdf, url, zipAvailable download formats
    Dataset updated
    Oct 23, 2025
    Dataset authored and provided by
    NSW Department of Climate Change, Energy, the Environment and Water
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Grid Garage Toolbox is designed to help you undertake the Geographic Information System (GIS) tasks required to process GIS data (geodata) into a standard, spatially aligned format. This format is required by most, grid or raster, spatial modelling tools such as the Multi-criteria Analysis Shell for Spatial Decision Support (MCAS-S). Grid Garage contains 36 tools designed to save you time by batch processing repetitive GIS tasks as well diagnosing problems with data and capturing a record of processing step and any errors encountered.

    Grid Garage provides tools that function using a list based approach to batch processing where both inputs and outputs are specified in tables to enable selective batch processing and detailed result reporting. In many cases the tools simply extend the functionality of standard ArcGIS tools, providing some or all of the inputs required by these tools via the input table to enable batch processing on a 'per item' basis. This approach differs slightly from normal batch processing in ArcGIS, instead of manually selecting single items or a folder on which to apply a tool or model you provide a table listing target datasets. In summary the Grid Garage allows you to:

    • List, describe and manage very large volumes of geodata.
    • Batch process repetitive GIS tasks such as managing (renaming, describing etc.) or processing (clipping, resampling, reprojecting etc.) many geodata inputs such as time-series geodata derived from satellite imagery or climate models.
    • Record any errors when batch processing and diagnose errors by interrogating the input geodata that failed.
    • Develop your own models in ArcGIS ModelBuilder that allow you to automate any GIS workflow utilising one or more of the Grid Garage tools that can process an unlimited number of inputs.
    • Automate the process of generating MCAS-S TIP metadata files for any number of input raster datasets.

    The Grid Garage is intended for use by anyone with an understanding of GIS principles and an intermediate to advanced level of GIS skills. Using the Grid Garage tools in ArcGIS ModelBuilder requires skills in the use of the ArcGIS ModelBuilder tool.

    Download Instructions: Create a new folder on your computer or network and then download and unzip the zip file from the GitHub Release page for each of the following items in the 'Data and Resources' section below. There is a folder in each zip file that contains all the files. See the Grid Garage User Guide for instructions on how to install and use the Grid Garage Toolbox with the sample data provided.

  19. PLACES: Place Data (GIS Friendly Format), 2022 release

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Place Data (GIS Friendly Format), 2022 release [Dataset]. https://catalog.data.gov/dataset/places-place-data-gis-friendly-format-2022-release
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based place (incorporated and census designated places) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 29 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  20. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
Organization logo

Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010)

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
Guisguis Port Sariaya, Quezon
Description

The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu