100+ datasets found
  1. Data from: Visual programming-based Geospatial Cyberinfrastructure for...

    • tandf.figshare.com
    docx
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao (2025). Visual programming-based Geospatial Cyberinfrastructure for open-source GIS education 3.0 [Dataset]. http://doi.org/10.6084/m9.figshare.28472871.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.

  2. Federal Railroad Administration GIS Web Mapping Application

    • catalog.data.gov
    • data.transportation.gov
    • +3more
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Railroad Administration (2024). Federal Railroad Administration GIS Web Mapping Application [Dataset]. https://catalog.data.gov/dataset/federal-railroad-administration-gis-web-mapping-application
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    Federal Railroad Administrationhttp://www.fra.dot.gov/
    Description

    The GIS Web Mapping Application is design to have the look and feel as Google Earth. The primary functionality is to provide the user information about FRA's rail lines, rail crossings, freight stations, and mileposting.

  3. D

    Geographic Information System GIS Software Market Report | Global Forecast...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System GIS Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.



    One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.



    Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.



    Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.



    Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.



    Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.



    Component Analysis



    The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.



    Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and

  4. a

    10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS...

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/317d8d6afba540448443b5630bae01be
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course demonstrates how to select, modify, create, and share web applications using ArcGIS Online. ArcGIS Online offers many different options for creating web applications that share web maps, web scenes, and spatial functions. But how do you decide which web application best meets your requirements? Each web application option implements different functions and showcases a specific look and feel. You can choose a web application that meets your organization's functional requirements, apply your organization's look and feel, and share your web map without writing any code.Two workflows will be introduced for creating web applications using ArcGIS Online:Applying your web map to an existing template applicationCreating your own web application using Web AppBuilder for ArcGISAfter completing this course, you will be able to do the following:Identify the components of a web application.Create a web application from an existing configurable app template.Create a web application using Web AppBuilder for ArcGIS.Use ArcGIS Online to deploy a web application.

  5. GeoForm (Deprecated)

    • cityofdentongishub-dentontxgis.hub.arcgis.com
    • data-salemva.opendata.arcgis.com
    Updated Jul 3, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). GeoForm (Deprecated) [Dataset]. https://cityofdentongishub-dentontxgis.hub.arcgis.com/items/931653256fd24301a84fc77955914a82
    Explore at:
    Dataset updated
    Jul 3, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  6. T

    GIS data for TXSELECT Version 1.0

    • dataverse.tdl.org
    zip
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubham Jain; Shubham Jain; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan (2024). GIS data for TXSELECT Version 1.0 [Dataset]. http://doi.org/10.18738/T8/FWJVKW
    Explore at:
    zip(602275438), zip(2658864376), zip(670451463)Available download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    Texas Data Repository
    Authors
    Shubham Jain; Shubham Jain; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This repository serves as a comprehensive data archive for GIS data utilized in the development of TXSELECT (tx.select.tamu.edu). Contents include raw, processed, and intermediate GIS datasets (watershed boundaries, land cover, soil type, census blocks etc.), used to create input files for TXSELECT using the code available at this site - https://github.com/shubhamjain15/TX-SELECT.

  7. Texas GIS Data By County

    • kaggle.com
    zip
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ItsMundo (2022). Texas GIS Data By County [Dataset]. https://www.kaggle.com/datasets/itsmundo/texas-gis-data-by-county
    Explore at:
    zip(11720 bytes)Available download formats
    Dataset updated
    Sep 9, 2022
    Authors
    ItsMundo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Texas
    Description

    This dataset was created to be used in my Capstone Project for the Google Data Analytics Professional Certificate. Data was web scraped from the state websites to combine the GIS information like FIPS, latitude, longitude, and County Codes by both number and Mailing Number.

    RStudio was used for this web scrape and join. For details on how it was done you can go to the following link for my Github repository.

    Feel free to follow my Github or LinkedIn profile to see what I end up doing with this Dataset.

  8. GIS Dashboard Web Files

    • figshare.com
    zip
    Updated Jul 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    xx yyy (2025). GIS Dashboard Web Files [Dataset]. http://doi.org/10.6084/m9.figshare.29652275.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 27, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    xx yyy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Web files supporting the CoICT Journal paper

  9. Socio-Environmental Science Investigations Using the Geospatial Curriculum...

    • icpsr.umich.edu
    Updated Oct 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena (2022). Socio-Environmental Science Investigations Using the Geospatial Curriculum Approach with Web Geospatial Information Systems, Pennsylvania, 2016-2020 [Dataset]. http://doi.org/10.3886/ICPSR38181.v1
    Explore at:
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms

    Time period covered
    Sep 1, 2016 - Aug 31, 2020
    Area covered
    Pennsylvania
    Description

    This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.

  10. u

    NEWT: National Extension Web-mapping Tool

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cooperative Extension System; Virginia Tech Center for Geospatial Information Technology (2025). NEWT: National Extension Web-mapping Tool [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/NEWT_National_Extension_Web-mapping_Tool/24852795
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    Cooperative Extension System
    Authors
    Cooperative Extension System; Virginia Tech Center for Geospatial Information Technology
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    eXtension Foundation, the University of New Hampshire, and Virginia Tech have developed a mapping and data exploration tool to assist Cooperative Extension staff and administrators in making strategic planning and programming decisions. The tool, called the National Extension Web-mapping Tool (or NEWT), is the key in efforts to make spatial data available within cooperative extension system. NEWT requires no GIS experience to use. NEWT provides access for CES staff and administrators to relevant spatial data at a variety of scales (national, state, county) in useful formats (maps, tables, graphs), all without the need for any experience or technical skills in Geographic Information System (GIS) software. By providing consistent access to relevant spatial data throughout the country in a format useful to CES staff and administrators, NEWT represents a significant advancement for the use of spatial technology in CES. Users of the site will be able to discover the data layers which are of most interest to them by making simple, guided choices about topics related to their work. Once the relevant data layers have been chosen, a mapping interface will allow the exploration of spatial relationships and the creation and export of maps. Extension areas to filter searches include 4-H Youth & Family, Agriculture, Business, Community, Food & Health, and Natural Resources. Users will also be able to explore data by viewing data tables and graphs. This Beta release is open for public use and feedback. Resources in this dataset:Resource Title: Website Pointer to NEWT National Extension Web-mapping Tool Beta. File Name: Web Page, url: https://www.mapasyst.org/newt/ The site leads the user through the process of selecting the data in which they would be most interested, then provides a variety of ways for the user to explore the data (maps, graphs, tables).

  11. l

    SMMLCP GIS Data Layers

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). SMMLCP GIS Data Layers [Dataset]. https://data.lacounty.gov/datasets/smmlcp-gis-data-layers
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:

    Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.

    Below is a list of the GIS Layers provided (shapefile format):

    Recreation (Zipped - 5 MB - click here)

    Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed

    Scenic Resources (Zipped - 3 MB - click here)

    Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element

    Biological Resources (Zipped - 45 MB - click here)

    National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat

    Hazards (Zipped - 8 MB - click here)

    FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area

    Zoning and Land Use (Zipped - 13 MB - click here)

    Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning

    Other Layers (Zipped - 38 MB - click here)

    Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village

    Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.

  12. G

    Geographic Information Systems Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information Systems Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-systems-platform-1974602
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Systems (GIS) platform market is poised for substantial growth, projected to reach an estimated market size of $XXX million in 2025, with a Compound Annual Growth Rate (CAGR) of XX% expected throughout the forecast period of 2025-2033. This robust expansion is primarily driven by the increasing demand for sophisticated data visualization, spatial analysis, and location-based services across a multitude of sectors. The government and utilities sector is a significant contributor, leveraging GIS for infrastructure management, urban planning, resource allocation, and emergency response. Commercial applications are also rapidly adopting GIS for customer analytics, supply chain optimization, real estate development, and targeted marketing. The proliferation of web-enabled GIS solutions, including Web Map Services, is democratizing access to geospatial data and tools, fostering innovation and wider adoption beyond traditional GIS professionals. Desktop GIS continues to hold its ground for complex analytical tasks, but the trend towards cloud-based and mobile GIS solutions is accelerating, offering greater flexibility and scalability. Key trends shaping the GIS platform market include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for advanced spatial analytics and predictive modeling, the growing importance of real-time data processing and streaming, and the rise of open-source GIS solutions challenging established players. The increasing availability of high-resolution satellite imagery and IoT sensor data further fuels the need for powerful GIS platforms. However, certain restraints might temper this growth, such as the initial cost of implementation for some advanced solutions, a potential shortage of skilled GIS professionals, and data privacy concerns associated with extensive location data collection. The market is characterized by intense competition among established global players and emerging innovators, all vying to capture market share by offering comprehensive, user-friendly, and technologically advanced GIS solutions. This comprehensive report delves into the dynamic Geographic Information Systems (GIS) Platform market, providing in-depth analysis and forecasts from 2019 to 2033, with a base year of 2025. The study meticulously examines market concentration, key trends, regional dominance, product insights, and the driving forces and challenges shaping this vital industry. We project the market to reach values in the tens of millions and hundreds of millions of dollars across various segments.

  13. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Coal Oil Point, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  14. a

    Economic Development Zone

    • web-ebrgis.opendata.arcgis.com
    • newgis.brla.gov
    • +2more
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    East Baton Rouge GIS Map Portal (2023). Economic Development Zone [Dataset]. https://web-ebrgis.opendata.arcgis.com/datasets/economic-development-zone/
    Explore at:
    Dataset updated
    Aug 23, 2023
    Dataset authored and provided by
    East Baton Rouge GIS Map Portal
    Area covered
    Description

    Polygon geometry with attributes displaying economic development zones in East Baton Rouge Parish, Louisiana.Metadata

  15. Rural & Statewide GIS/Data Needs (HEPGIS) - Lead

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - Lead [Dataset]. https://catalog.data.gov/dataset/rural-statewide-gis-data-needs-hepgis-lead
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administrationhttps://highways.dot.gov/
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  16. EGIS Web Mapping Application

    • catalog.newmexicowaterdata.org
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Environment Department (2025). EGIS Web Mapping Application [Dataset]. https://catalog.newmexicowaterdata.org/dataset/nmed-egis-web-mapping-application
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    New Mexico Environment Departmenthttp://www.env.nm.gov/
    Description

    NM Environment Department Surface Water Quality Bureau GIS Web Mapping Tool

  17. Rural & Statewide GIS/Data Needs (HEPGIS) - MAP-21 National Highway System

    • catalog.data.gov
    • data.transportation.gov
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - MAP-21 National Highway System [Dataset]. https://catalog.data.gov/dataset/rural-statewide-gis-data-needs-hepgis-map-21-national-highway-system
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administrationhttps://highways.dot.gov/
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  18. Additional file 1 of Bibliometric analysis of GIS applications in heritage...

    • springernature.figshare.com
    zip
    Updated Aug 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yong Huang (2024). Additional file 1 of Bibliometric analysis of GIS applications in heritage studies based on Web of Science from 1994 to 2023 [Dataset]. http://doi.org/10.6084/m9.figshare.26681833.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yong Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1. Web_of_Science_Full_Record_and_Cited_References_1026. (This data file contains the full record and cited references of 1026 articles exported from Web of Science).

  19. Basic Viewer (Deprecated)

    • noveladata.com
    • data-salemva.opendata.arcgis.com
    • +1more
    Updated Jun 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2016). Basic Viewer (Deprecated) [Dataset]. https://www.noveladata.com/items/310f18d4ac5246199976396c933a977f
    Explore at:
    Dataset updated
    Jun 16, 2016
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Basic Viewer is a configurable app template that can be used as a general purpose app for displaying a web map and configuring a variety of tools. This app offers a clean, simple interface that accentuates the web map and includes a toolbar and floating panel.Use CasesDisplays a set of commonly used tools within a floating pane. This is a good choice for balancing the need for a collection of tools while still maximizing the amount of screen real estate dedicated to the map. The app includes the ability to toggle layer visibility, print a map, and show pop-ups in the floating pane.Provides editing capabilities in the context of a general-purpose mapping app. This is a good choice when your audience needs additional tools or information about the map to support their editing activities.Configurable OptionsUse Basic Viewer to present content from a web map and configure it using the following options:Choose a title, sub title, logo, description, and color scheme.Configure a custom splash screen that will display when the app loads.Use custom CSS to customize the look and feel of the app.Enable tools on a toolbar including a basemap gallery, bookmarks, layer list, opacity slider, legend, measure, overview map, etc.Enable an editor tool and an editor toolbar giving users editing capabilities on editable feature layers.Configure a printing tool that can utilize all available print layouts configured in the hosting organization.Configure the ability for feature and location search.Set up custom URL parameters that define how the app and web map appear on load.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  20. H

    Hawaii Brightfields Initiative Web Mapping Application

    • opendata.hawaii.gov
    Updated Nov 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2023). Hawaii Brightfields Initiative Web Mapping Application [Dataset]. https://opendata.hawaii.gov/dataset/hawaii-brightfields-initiative-web-mapping-application
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Nov 3, 2023
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Area covered
    Hawaii
    Description
    [Metadata] Web Mapping Application showing Hawaii Brightfields Initiative Data as of September, 2019 / Previously Contaminated Lands by TMK Parcel. This map contains tax map key parcels that have had previous contamination. Current status of contamination has not been verified for these parcels. HSEO has made it a priority to support informed renewable energy production in Hawaii. The Hawaii Brightfields Initiative database is intended to inform preliminary site due diligence and reduce soft costs associated with renewable energy development decisions. HSEO offers this resource to facilitate the reuse of previously developed or disturbed lands for renewable energy development in support of achieving its mandate of 100% renewable energy generation by 2045. For the purposes of the Hawaii Brightfields Initiative database, current site status regarding use, remediation, or actual or potential contamination has not been verified. Sites in this database may or may not have been assessed or remediated. Users should seek additional information and confirm actual site status and risks with the proper state and federal regulatory authorities, including HEER and/or the Hawaii Department of Health Solid and Hazardous Waste Branch. Information on specific individual sites may be found in HEER’s iHEER System (search by Tax Map Key number) and/or EPA’s RE-PoweringMapper (search by site key word, location, or name using the "Find" feature [Ctrl-F]). For more information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/hi_brightfields_initiative_data.pdf.

    The information presented is based on available data in public databases and spatial layers. The database information will only be updated as feedback is given, and research is conducted. The spatial layers are periodically updated but be aware that data shown on these maps may not be current. The TMK layer used is available to the public at the Hawaii Geospatial Portal and 'https://planning.hawaii.gov/gis/download-gis-data/' target='_blank' rel='nofollow ugc noopener noreferrer'>Hawaii Statewide GIS Program.

    Developers targeting DoD lands should contact the appropriate DoD services (US Air Force, US Army, US Marines, US Navy) for a local point of contact AND contact the DoD energy siting clearinghouse (for all projects) at https://www.acq.osd.mil/dodsc or DoDSitingClearinghouse@osd.mil.

    For more information, and / or to report inaccuracies or provide input, please email dbedt.hseo.reb@hawaii.gov or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao (2025). Visual programming-based Geospatial Cyberinfrastructure for open-source GIS education 3.0 [Dataset]. http://doi.org/10.6084/m9.figshare.28472871.v1
Organization logo

Data from: Visual programming-based Geospatial Cyberinfrastructure for open-source GIS education 3.0

Related Article
Explore at:
docxAvailable download formats
Dataset updated
Mar 4, 2025
Dataset provided by
Taylor & Francishttps://taylorandfrancis.com/
Authors
Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.

Search
Clear search
Close search
Google apps
Main menu