Facebook
TwitterAbout this itemBack in 2017, I made a Cascade story map to compile GIS career resources for my current and future interns. Fast forward seven years, and I finally rebuilt it as an ArcGIS StoryMap. From job title descriptions to certifications and to salaries, it covers the main areas I find emerging professionals asking about when they're looking at a career in GIS. There are multiple shout outs to the Consortium in it too, of course.😎Author/ContributorJohn NergeOrganizationPersonal workOrg Websitehttps://bit.ly/JohnNerge
Facebook
TwitterAn ArcGIS Dashboard used in the ArcGIS Hub site, GIS Service Center, to share information with the organization.
Facebook
Twitterhttps://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographic information systems gis in the U.S.
Facebook
TwitterTempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools, and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC), and with the membership, staff tracks collaborative efforts to recruit business prospects and locations. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities, and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe. This dataset provides the target and actual job creation numbers for the City of Tempe and the Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population. This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created. Additional Information Source: Extracted from GPEC monthly and annual reports and proprietary excel filesContact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary Excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary
Facebook
TwitterI’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
Facebook
TwitterSTORY MAPQuestion four
Facebook
TwitterVideos and additional details assembled by Strivven, supported by Esri.
Facebook
TwitterAddy PopeHigher Education Manager - Esri UKStill think I am a glaciologistGIS consultant GIS EducationDidn't actually do any GIS as an undergrad.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
View the diversity of challenges and opportunities across America's counties within different types of rural regions and communities. Get statistics on people, jobs, and agriculture.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Data file GIS API Services Interactive map Zip of CSV files For complete information, please visit https://data.gov.
Facebook
TwitterI graduated from Durham University with a Mathematics degree (MMath) and began my career working for the engineering consultancy Mott MacDonald as a Graduate Transport Modeller.I spent three years in this role, developing simulation models for transport systems at the local and national level. During this time I began using GIS to aid in designing network structures and displaying model outputs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterGapMaps GIS Data by Azira uses location data on mobile phones sourced by Azira which is collected from smartphone apps when the users have given their permission to track their location. It can shed light on consumer visitation patterns (“where from” and “where to”), frequency of visits, profiles of consumers and much more.
Businesses can utilise GIS data to answer key questions including:
- What is the demographic profile of customers visiting my locations?
- What is my primary catchment? And where within that catchment do most of my customers travel from to reach my locations?
- What points of interest drive customers to my locations (ie. work, shopping, recreation, hotel or education facilities that are in the area) ?
- How far do customers travel to visit my locations?
- Where are the potential gaps in my store network for new developments?
- What is the sales impact on an existing store if a new store is opened nearby?
- Is my marketing strategy targeted to the right audience?
- Where are my competitor's customers coming from?
Mobile Location data provides a range of benefits that make it a valuable GIS Data source for location intelligence services including: - Real-time - Low-cost at high scale - Accurate - Flexible - Non-proprietary - Empirical
Azira have created robust screening methods to evaluate the quality of Mobile location data collected from multiple sources to ensure that their data lake contains only the highest-quality mobile location data.
This includes partnering with trusted location SDK providers that get proper end user consent to track their location when they download an application, can detect device movement/visits and use GPS to determine location co-ordinates.
Data received from partners is put through Azira's data quality algorithm discarding data points that receive a low quality score.
Use cases in Europe will be considered on a case to case basis.
Facebook
Twitterhttps://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for forest engineering (gis) in the U.S.
Facebook
TwitterThe USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/
Facebook
TwitterThis dataset will be moving! The City is working on a new Open Data Portal for GIS data. This dataset will soon be available at https://data-seattlecitygis.opendata.arcgis.com/. We apologize for any inconvenience, but this new platform will allow us to regularly update our data and provided better tools for our spatial data. https://gisrevprxy.seattle.gov/arcgis/rest/services/SDOT_EXT/DSG_datasharing/MapServer/45
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019 and sho
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There is a Boulder County focus inherited from the Boulder Creek Critical Zone program. If you are aware of a resource worth sharing please let us know. Files are in the versatile KML format for ease of sharing. If you have trouble importing these into ArcGIS or another program just let us know.
SITE EXTENTS: Kml's that shows study site extents. The main set of extents was created by Kyotaek Hwang.
SITE: BOULDER CREEK BOULDER COUNTY More Boulder County data can be found here: https://opendata-bouldercounty.hub.arcgis.com/ Selected kmls include: - Archaeologically_Sensitive_Areas - County_Open_Space - Lakes_and_Reservoirs (included modern glaciers) - mun_wtrsheds_czo (restricted areas) - Open_space_czo - Riparian_Areas_-_2013_ERE - Road_Map_Roads
GEOLOGY - Geological map by Ogden Tweto, clipped here to Boulder Creek, geo_czo_tweto https://coloradogeologicalsurvey.org/publications/tweto-geologic-map-colorado-1979/
SOILS Natural Resources Conservation Service soil maps https://www.nrcs.usda.gov - soilmu_a_co643_bc (boulder County) - soilmu_a_co645_arnf (Arapaho National Forest
GLACIERS Madole's Glaciers LGM. No online source. Check licensing before using in publication
TOPOGRAPHIC Topographic Lines created but the BcCZO from 30m USGS DEM
LIDAR For Lidar: OpenTopgraphy 2010 Lidar, Snow ON Snow Off https://portal.opentopography.org/dataSearch?search=Boulder%20creek%20CZO
SITE: COAL CREEK Coal Creek Trails
Facebook
Twitterhttps://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for gis in the U.S.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is valued to increase USD 2.35 billion, at a CAGR of 15.7% from 2024 to 2029. Increased use of GIS for capacity planning will drive the GIS in telecom sector market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 28% growth during the forecast period.
By Product - Software segment was valued at USD 470.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 256.91 million
Market Future Opportunities: USD 2350.30 million
CAGR from 2024 to 2029: 15.7%
Market Summary
The market is experiencing significant growth as communication companies increasingly adopt Geographic Information Systems (GIS) for network planning and optimization. Core technologies, such as satellite imagery and location-based services, are driving this trend, enabling telecom providers to improve network performance and customer experience. One major application of GIS in the telecom sector is capacity planning, which allows companies to optimize their network infrastructure based on real-time data.
However, the integration of GIS with big data and other advanced technologies presents a communication gap between developers and end-users, requiring a focus on user-friendly interfaces and training programs. Additionally, regulatory compliance and data security remain significant challenges for the market. Despite these hurdles, the opportunities for innovation and improved operational efficiency make the market an exciting and evolving space.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the GIS In Telecom Sector Market Segmented ?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The global telecom sector's reliance on Geographic Information Systems (GIS) continues to expand, with the market for GIS in telecoms projected to grow significantly. According to recent industry reports, the market for GIS data visualization and spatial data infrastructure in telecoms has experienced a notable increase of 18.7% in the past year. Furthermore, the demand for advanced spatial analysis tools, such as building penetration analysis, geospatial asset management, and work order management systems, has risen by 21.3%. Telecom companies utilize GIS for network performance monitoring, data integration platforms, and network planning. For instance, GIS enables network design, radio frequency interference analysis, route optimization software, mobile network optimization, signal propagation modeling, and service area mapping.
Request Free Sample
The Software segment was valued at USD 470.60 billion in 2019 and showed a gradual increase during the forecast period.
Additionally, it plays a crucial role in infrastructure management, location-based services, emergency response planning, maintenance scheduling, and telecom network design. Moreover, the adoption of 3D GIS modeling, LIDAR data processing, and customer location mapping has gained traction, contributing to the market's expansion. The future outlook is promising, with industry experts anticipating a 25.6% increase in the use of GIS for telecom network capacity planning and telecom outage prediction. These trends underscore the continuous evolution of the market and its applications across various sectors.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 28% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How GIS In Telecom Sector Market Demand is Rising in APAC Request Free Sample
In China, the construction of smart cities in Qingdao, Hangzhou, and Xiamen, among others, is driving the demand for Geographic Information Systems (GIS) in various sectors. By 2025, China aims to build more smart cities, leading to significant growth opportunities for GIS companies. Esri Global Inc., a leading player
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Mobile Work Order Apps with GIS market size reached USD 2.83 billion in 2024, and the market is projected to expand at a CAGR of 16.2% from 2025 to 2033, reaching a forecasted value of USD 10.16 billion by 2033. The robust growth of this market is primarily driven by the surge in demand for real-time asset tracking, optimized field workforce management, and the increasing adoption of Geographic Information System (GIS) technologies across diverse industrial verticals. These factors are enabling organizations to improve operational efficiency, reduce costs, and deliver enhanced customer service through seamless integration of location intelligence with mobile work order management.
One of the key growth factors propelling the Mobile Work Order Apps with GIS market is the expanding need for digital transformation in asset-intensive sectors such as utilities, oil and gas, and transportation. Companies in these sectors are under immense pressure to streamline their operations, minimize downtime, and ensure regulatory compliance. Mobile work order apps, when combined with GIS capabilities, offer powerful tools for field workforce automation, asset lifecycle management, and predictive maintenance. These solutions facilitate real-time data capture, mapping, and visualization, enabling field technicians to access critical information on-the-go and make informed decisions quickly. As a result, organizations are increasingly investing in these integrated platforms to enhance productivity, reduce manual errors, and optimize resource allocation.
Another significant driver for the market is the growing adoption of cloud-based deployment models, which offer scalability, flexibility, and cost-effectiveness. Cloud-based Mobile Work Order Apps with GIS allow organizations to centralize data management, ensure seamless updates, and enable remote access for field teams. This is particularly valuable for enterprises with geographically dispersed assets and a mobile workforce. Furthermore, the proliferation of smartphones and advancements in mobile network connectivity have made it easier for organizations to deploy these solutions at scale. As a result, both large enterprises and small-to-medium businesses are leveraging cloud-based GIS-enabled work order apps to gain a competitive edge and improve service delivery.
The increasing focus on sustainability and infrastructure modernization is also fueling market growth. Governments and public utilities are investing heavily in smart infrastructure projects, which require advanced tools for monitoring, maintenance, and field operations. Mobile Work Order Apps with GIS play a pivotal role in these initiatives by providing real-time location data, facilitating efficient dispatch of field personnel, and supporting proactive maintenance strategies. Additionally, these solutions are instrumental in supporting regulatory compliance, safety protocols, and environmental monitoring, further driving their adoption across sectors such as government, facilities management, and manufacturing.
From a regional perspective, North America continues to dominate the Mobile Work Order Apps with GIS market, accounting for the largest share in 2024. This dominance is attributed to the early adoption of advanced GIS technologies, strong presence of leading solution providers, and substantial investments in digital infrastructure. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by rapid industrialization, urbanization, and increasing government initiatives for smart city development. Europe also represents a significant market, with growing demand from utilities, transportation, and manufacturing sectors seeking to modernize their field operations and asset management practices.
The Mobile Work Order Apps with GIS market by component is segmented into software and services. The software segment encompasses a wide range of applications designed to facilitate work order management, asset tracking, and GIS integration. These solutions provide robust functionalities such as real-time mapping, scheduling, route optimization, and analytics. The growing complexity of field operations and the need for seamless integration with enterprise resource planning (ERP) and asset management systems are driving the adoption of comprehensive softw
Facebook
TwitterAbout this itemBack in 2017, I made a Cascade story map to compile GIS career resources for my current and future interns. Fast forward seven years, and I finally rebuilt it as an ArcGIS StoryMap. From job title descriptions to certifications and to salaries, it covers the main areas I find emerging professionals asking about when they're looking at a career in GIS. There are multiple shout outs to the Consortium in it too, of course.😎Author/ContributorJohn NergeOrganizationPersonal workOrg Websitehttps://bit.ly/JohnNerge