100+ datasets found
  1. a

    Our GIS Work

    • gis-request-management-newbern.hub.arcgis.com
    • gis-request-management-1-utahdnr.hub.arcgis.com
    • +8more
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of New Bern GIS (2025). Our GIS Work [Dataset]. https://gis-request-management-newbern.hub.arcgis.com/items/6314937462d64fc4be300b91c65607c5
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    City of New Bern GIS
    License
    Description

    An ArcGIS Dashboard used in the ArcGIS Hub site, GIS Service Center, to share information with the organization.

  2. d

    5.02 New Jobs Created (summary)

    • catalog.data.gov
    • data.tempe.gov
    • +8more
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 5.02 New Jobs Created (summary) [Dataset]. https://catalog.data.gov/dataset/5-02-new-jobs-created-summary-3cc9b
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    City of Tempe
    Description

    Tempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC) and with the membership staff tracks collaborative efforts to recruit business prospects and locates. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe.This dataset provides the target and actual job creation numbers for the City of Tempe and Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population.This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created.Additional InformationSource:Contact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary

  3. a

    HOW I DISCOVERED A CAREER IN GIS.

    • rwanda.africageoportal.com
    • africageoportal.com
    • +1more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). HOW I DISCOVERED A CAREER IN GIS. [Dataset]. https://rwanda.africageoportal.com/app/africageoportal::how-i-discovered-a-career-in-gis-
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Description

    I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.

  4. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  5. a

    Gis work Story Map

    • africageoportal.com
    Updated Mar 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2023). Gis work Story Map [Dataset]. https://www.africageoportal.com/datasets/africageoportal::-gis-work-story-map
    Explore at:
    Dataset updated
    Mar 27, 2023
    Dataset authored and provided by
    Africa GeoPortal
    Description

    STORY MAPQuestion four

  6. 2025 Green Card Report for Geographic Information Systems Gis

    • myvisajobs.com
    Updated Jan 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MyVisaJobs (2025). 2025 Green Card Report for Geographic Information Systems Gis [Dataset]. https://www.myvisajobs.com/reports/green-card/major/geographic-information-systems-gis
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    MyVisaJobs.com
    Authors
    MyVisaJobs
    License

    https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/

    Variables measured
    Major, Salary, Petitions Filed
    Description

    A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographic information systems gis in the U.S.

  7. Job Centers – SCAG Region

    • hub.arcgis.com
    • hrtc-oc-cerf.hub.arcgis.com
    • +1more
    Updated Feb 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern California Association of Governments (2022). Job Centers – SCAG Region [Dataset]. https://hub.arcgis.com/maps/SCAG::job-centers-scag-region
    Explore at:
    Dataset updated
    Feb 8, 2022
    Dataset authored and provided by
    Southern California Association of Governmentshttp://www.scag.ca.gov/
    Area covered
    Description

    Data Source: The primary data source used for this analysis are point-level business establishment data from InfoUSA. This commercial database produced by InfoGroup provides a comprehensive list of businesses in the SCAG region, including their industrial classification, number of employees, and several additional fields. Data have been post-processed for accuracy by SCAG staff and have an effective date of 2016. Locally-weighted regression: First, the SCAG region is overlaid with a grid, or fishnet, of 1km, 2km, and ½-km per cell. At the 1km cell size, there are 16,959 cells covering the SCAG region. Using the Spatial Join feature in ArcGIS, a sum total of business establishments and total employees (i.e., not separated by industrial classification) were joined to each grid cell. Note that since cells are of a standard size, the employment total in a cell is the equivalent of the employment density. A locally-weighted regression (LWR) procedure was developed using the R Statistical Software package in order to identify subcenters.The below procedure is described for 1km grid cells, but was repeated for 2km and 1/2km cells. Identify local maxima candidates.Using R’s lwr package, each cell’s 120 nearest neighbors, corresponding to roughly 5.5 km in each direction, was explored to identify high outliers or local maxima based on the total employment field. Cells with a z-score of above 2.58 were considered local maxima candidates.Identify local maxima. LWR can result in local maxima existing within close proximity. This step used a .dbf-format spatial weights matrix (knn=120 nearest neighbors) to identify only cells which are higher than all of their 120 nearest neighbors. At the 1km scale, 84 local maxima were found, which will form the “peak” of each individual subcenter. Search adjacent cells to include as part of each subcenter. In order to find which cells also are part of each local maximum’s subcenter, we use a queen (adjacency) contiguity matrix to search adjacent cells up to 120 nearest neighbors, adding cells if they are also greater than the average density in their neighborhood. A total of 695 cells comprise subcenters at the 1km scale. A video from Kane et al. (2018) demonstrates the above aspects of the methodology (please refer to 0:35 through 2:35 of https://youtu.be/ylTWnvCCO54), with several minor differences which result in a different final map of subcenters: different years and slightly different post-processing steps for InfoUSAdata, video study covers 5-county region (Imperial county not included), and limited to 1km scale subcenters.A challenge arises in that using 1km grid cells may fail to identify the correct local maximum for a particularly large employment center whose experience of high density occurs over a larger area. The process was repeated at a 2km scale, resulting in 54 “coarse scaled” subcenters. Similarly, some centers may exist with a particularly tightly-packed area of dense employment which is not detectable at the medium, 1km scale. The process was repeated again with ½-km grid cells, resulting in 95 “fine scaled” subcenters. In many instances, boundaries of fine, medium, and coarse scaled subcenters were similar, but differences existed. The next step was to qualitatively comparing results at each scale to create the final map of 72 job centers across the region. Most centers are medium scale, but some known areas of especially employment density were better captured at the 2km scale while . Giuliano and Small’s (1991) “ten jobs per acre” threshold was used as a rough guide to test for reasonableness when choosing a larger or smaller scale. For example, in some instances, a 1km scale included much additional land which reduced job density well below 10 jobs per acre. In this instance, an overlapping or nearby 1/2km scaled center provided a better reflection of the local employment peak. Ultimately, the goal was to identify areas where job density is distinct from nearby areas. Finally, in order to serve land use and travel demand modeling purposes for Connect SoCal, job centers were joined to their nearest TAZ boundaries. While the identification mechanism described above uses a combination of point and grid cell boundaries, the job centers boundaries expressed in this layer, and used for Connect SoCal purposes, are built from TAZ geographies. In Connect SoCal, job centers are associated with one of three strategies: focused growth, coworking space, or parking/AVR.Data Field/Value description:name: Name of job center based on name of local jurisdiction(s) or other discernable feature.Focused_Gr: Indicates whether job center was used for the 2020 RTP/SCS Focused Growth strategy, 1: center was used, 0: center was not used.Cowork: Indicates whether job center was used for the 2020 RTP/SCS Co-working space strategy, 1: center was used, 0: center was not used.Park_AVR: Indicates whether job center was used for the 2020 RTP/SCS parking and average vehicle ridership (AVR) strategies, 1: center was used, 0: center was not used. nTAZ: number of Transportation Analysis Zones (TAZs) which comprise this center.emp16: Estimated number of workers within job center boundaries based on 2016 InfoUSA point-based business establishment data. Values are rounded to the nearest 1000. acres: Land area within job center boundaries based on grid-based identification mechanism (i.e., not based on TAZ boundaries shown). Values are rounded to the nearest 100.

  8. N

    NMFWRI GIS/Mapping

    • catalog.newmexicowaterdata.org
    html
    Updated Oct 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Forest and Watershed Restoration Institute (2023). NMFWRI GIS/Mapping [Dataset]. https://catalog.newmexicowaterdata.org/dataset/nmfwri-gis-mapping
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 23, 2023
    Dataset provided by
    New Mexico Forest and Watershed Restoration Institute
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    NMFWRI represents the state’s only dedicated capability for supporting the spatial data analysis needs of external stakeholders in the natural resources sector, as well as the GIS/GPS capacity for Highlands University and for most of northern New Mexico. NMFWRI’s GIS work also provides help with maps and other geographic information to New Mexico groups engaged in forest restoration and land management, but who are too small to maintain their own GIS capability. These groups include soil and water conservation districts, municipalities, private groups and individuals, and tribal organizations.

  9. Westchester County GIS: Geospatial Projects at Work

    • gis.westchestergov.com
    Updated Mar 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Westchester County GIS (2021). Westchester County GIS: Geospatial Projects at Work [Dataset]. https://gis.westchestergov.com/datasets/westchester-county-gis-geospatial-projects-at-work
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset provided by
    Westchester Countyhttp://www.westchestergov.com/
    Authors
    Westchester County GIS
    Area covered
    Westchester County
    Description

    In July 2020, Westchester County GIS launched the new GeoHub website to make Westchester County geospatial data more organized and accessible to the general public. The site offers an abundance of free County-focused data and maps, including interactive mapping applications, which provide information on specific topics. From infrastructure to flood zones, ecosystems to census data, local businesses to nonprofits, the GeoHub offers a way to visualize, communicate, explore, analyze and plan. Click on this link to explore the GeoHub site.

  10. 2025 Green Card Report for Gis

    • myvisajobs.com
    Updated Jan 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MyVisaJobs (2025). 2025 Green Card Report for Gis [Dataset]. https://www.myvisajobs.com/reports/green-card/major/gis
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    MyVisaJobs.com
    Authors
    MyVisaJobs
    License

    https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/

    Variables measured
    Major, Salary, Petitions Filed
    Description

    A dataset that explores Green Card sponsorship trends, salary data, and employer insights for gis in the U.S.

  11. G

    GIS Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-industry-14668
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.

  12. Data from: The Long-Term Agroecosystem Research (LTAR) Network Standard GIS...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). The Long-Term Agroecosystem Research (LTAR) Network Standard GIS Data Layers, 2020 version [Dataset]. https://catalog.data.gov/dataset/the-long-term-agroecosystem-research-ltar-network-standard-gis-data-layers-2020-version-96132
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/

  13. w

    Moving!! - SDOT ROW Work (points)...

    • data.wu.ac.at
    application/excel +5
    Updated Mar 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SDOT GIS (2018). Moving!! - SDOT ROW Work (points) [arcgis_rest_services_SDOT_EXT_DSG_datasharing_MapServer_45] [Dataset]. https://data.wu.ac.at/schema/data_seattle_gov/aWFmZi1lYTdx
    Explore at:
    json, application/excel, xml, application/xml+rdf, csv, xlsxAvailable download formats
    Dataset updated
    Mar 12, 2018
    Dataset provided by
    SDOT GIS
    Description

    This dataset will be moving! The City is working on a new Open Data Portal for GIS data. This dataset will soon be available at https://data-seattlecitygis.opendata.arcgis.com/. We apologize for any inconvenience, but this new platform will allow us to regularly update our data and provided better tools for our spatial data. https://gisrevprxy.seattle.gov/arcgis/rest/services/SDOT_EXT/DSG_datasharing/MapServer/45

  14. Data from: Atlas of Rural and Small-Town America

    • agdatacommons.nal.usda.gov
    • datadiscoverystudio.org
    • +2more
    bin
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Atlas of Rural and Small-Town America [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Atlas_of_Rural_and_Small-Town_America/25696533
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    View the diversity of challenges and opportunities across America's counties within different types of rural regions and communities. Get statistics on people, jobs, and agriculture.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Data file GIS API Services Interactive map Zip of CSV files For complete information, please visit https://data.gov.

  15. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • data.baltimorecity.gov
    • +50more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  16. GIS Career Videos

    • library.ncge.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). GIS Career Videos [Dataset]. https://library.ncge.org/documents/NCGE::gis-career-videos/about
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Videos and additional details assembled by Strivven, supported by Esri.

  17. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  18. Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts (NPS, GRD, GRI, SAIR, SAIR_bedrock digital map) adapted from a Massachusetts Geological Survey Preliminary Report map by Kopera (2011) and a U.S. Geological Survey Miscellaneous Field Studies Map by Kaye (1980) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-saugus-iron-works-national-historic-site-massachusetts
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Saugus, Massachusetts
    Description

    The Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (sair_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (sair_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (sair_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sair_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sair_bedrock_geology_metadata_faq.pdf). Please read the sair_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Massachusetts Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sair_bedrock_geology_metadata.txt or sair_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. n

    Incident Journal Job Aid

    • prep-response-portal.napsgfoundation.org
    Updated Nov 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). Incident Journal Job Aid [Dataset]. https://prep-response-portal.napsgfoundation.org/documents/9d6fd4f13f3f4115ba3c7f013489023d
    Explore at:
    Dataset updated
    Nov 12, 2019
    Dataset authored and provided by
    NAPSG Foundation
    Description

    PurposeThis job aid will lead the GIS analyst through the process of manually creating an incident map journal and how to create additional pages for the journal. This process should be used at the beginning of an incident and then the journal should be maintained to assure it remains viable. The incident map journal serves as a curated center to place maps, apps, and dashboards relevant to the incident.

    This job aid assumes a working knowledge of how to create maps, apps, and dashboards on ArcGIS Online. For a tutorial, go to the Create apps from maps - ArcGIS Tutorial.Example workflow for the Geo-Enabled Plans Session at InSPIRE. Job Aid developed by FEMA GIS to enable GIS analysts to rapidly spin-up a standardized incident journal.

  20. S

    GIS - Parcel Viewer App

    • opendata.sjgov.org
    Updated Mar 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Works (2021). GIS - Parcel Viewer App [Dataset]. https://opendata.sjgov.org/dataset/gis-parcel-viewer-app
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 1, 2021
    Dataset provided by
    San Joaquin County, CA - GIS
    Authors
    Department of Public Works
    Description

    {{description}}

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of New Bern GIS (2025). Our GIS Work [Dataset]. https://gis-request-management-newbern.hub.arcgis.com/items/6314937462d64fc4be300b91c65607c5

Our GIS Work

Explore at:
41 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 3, 2025
Dataset authored and provided by
City of New Bern GIS
License
Description

An ArcGIS Dashboard used in the ArcGIS Hub site, GIS Service Center, to share information with the organization.

Search
Clear search
Close search
Google apps
Main menu