Facebook
TwitterThis dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A map of the University of Mississippi Field Station and accompanying GIS data
Facebook
TwitterThis layer provides data regarding to the physical structure of the earth that West Chester University resides upon. | Publication Date: April 2018, Last Updated: April 2018 | West Chester University’s Geography and Planning department upholds its mission to provide spatial analysis expertise in order to solve many problems regarding spatial applications that facilitates research, sustainability goals, planning and communal integration.This dataset was curated by West Chester University’s Department of Geography and Planning and presented using West Chester University's Open GIS Data.
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (focr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (focr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (focr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Tennessee, Tectonics and Structural Geology Research Group. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (focr_bedrock_geology_metadata.txt or focr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterColleges and Universities This feature layer, utilizing data from the National Center for Education Statistics (NCES), displays colleges and universities in the U.S. and its territories. NCES uses the Integrated Postsecondary Education Data System (IPEDS) as the "primary source for information on U.S. colleges, universities, and technical and vocational institutions." According to NCES, this layer "contains directory information for every institution in the 2023-24 IPEDS universe. Includes name, address, city, state, zip code and various URL links to the institution"s home page, admissions, financial aid offices and the net price calculator. Identifies institutions as currently active, and institutions that participate in Title IV federal financial aid programs for which IPEDS is mandatory." University of the District of ColumbiaData currency: 2023Data source: IPEDS Complete Data FilesData modification: Removed fields with coded values and replaced with descriptionsFor more information: Integrated Postsecondary Education Data SystemSupport documentation: Data DictionaryFor feedback, please contact: ArcGIScomNationalMaps@esri.com U.S. Department of Education (ED) Per ED, The mission of the Department of Education (ED) is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access for students of all ages.
Facebook
TwitterThis layer shows and identifies the roads owned by West Chester University. | Publication Date: April 2018, Last Updated: April 2018 | West Chester University’s Geography and Planning department upholds its mission to provide spatial analysis expertise in order to solve many problems regarding spatial applications that facilitates research, sustainability goals, planning and communal integration.This dataset was curated by West Chester University’s Department of Geography and Planning and presented using West Chester University's Open GIS Data.
Facebook
TwitterPolygon layer of Texas college/university campuses. Update Frequency: As NeededSource: Other SourcesSecurity Level: PublicOwned by TxDOT: FalseRelated LinksData Dictionary PDF [Generated 2025/03/14]
Facebook
Twitter**THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Group quarter is not a typical household-type living arrangement. People living in group quarters are usually not related to each other. Group quarters include such places as college residence halls, residential treatment centers, skilled nursing facilities, group homes, military barracks, correctional facilities, and workers' dormitories. Services in group quarters may include food, custodial or medical care as well as other types of assistance, and residency is commonly restricted to those receiving these services.There are generally two type of group quarters facilities. Institutional group quarters house people who are primarily ineligible, unable, or unlikely to participate in the labor force while residents. Non-institutional group quarters house people who are primarily eligible, able, or likely to participate in the labor force while residents.Included group quarters types and statusThe following group quarter facility types are or will be included in the Tennessee Group Quarters GIS dataset:Correctional facilitiesThese include state and federal detention centers and prisons. Locals jails operated by counties and several cities in the state. Some residential correctional facilities called "Workhouses" that are inspected by the Tennessee Department of Correction are includedStatus: All federal and state prisons and jails inspected by TDOC are included.Data sources: Homeland Infrastructure Foundation-Level Data Prison Boundaries, Tennessee Department of Correction Bed Space Capacity Reports and Jail Summary ReportsCapacity: HILFD and TDOC reports from July, 2018Population: No data has been compiledJuvenile facilitiesIncludes correctional facilities, non-correctional group homes and residential treatment facilitiesStatus: IN PROGRESS. Some juvenile correction and residential treatment facilities were included in HILFLD. A more comprehensive review of TN Department of Children Services data will be conducted.Data sources: Homeland Infrastructure Foundation-Level Data Prison BoundariesCapacity:Population:Nursing Facility/Skilled-nursing facilityNursing homes and assisted living facilities Including those licensed to provide medical care with seven-day, 24-hour coverage for people requiring long-term non acute care.Status: Not startedData sources:Capacity:Population:Other Institutional FacilitiesThis includes an assortment of psychiatric hospitals, hospices and schools for people with disabilities.Status: Not startedData sources:Capacity:Population:College/University Student HousingCollege/University student such as dormitories, fraternities and sororitiesStatus: IN PROGRESSData sources: Various university websites and building inventories will be leveraged to build this dataset with geocoded address locationsCapacity:Population:Other Noninstitutional FacilitiesStatus: NOT STARTEDData sources:Capacity:Population:Database backgroundThis database was compiled to serve a variety of US Census Bureau operations in the State of Tennessee. The data will primarily serve the State Data Center's annual contribution to the Federal State Cooperative for Population Estimates (FSCPE) data which support the Bureau's annual Population and Housing Unit Estimate release. Data will be reviewed and updated annually to support these operations. The data will also be provided used to support Count Review and Group Quarters Frame Update for the 2020 decennial census.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download UrbanTreeCanopy_2019.zip. The following information was produced from the 2019 Urban Tree Canopy Assessment for Jefferson County, KY sponsored by Trees Louisville. It is based on 2019 LOJIC Base Map data. It includes shapefiles and rasters. The study was performed by the University of Vermont Spatial Analysis Lab.
Facebook
TwitterI’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Group quarters are owned or managed by an entity or organization providing housing and/or services for the residents. People living in group quarters are usually not related to each other including such places as college residence halls, nursing homes and correctional facilities.The data in this map is compiled from a variety of publicly available sources to support US Census Bureau related activities in Tennessee including the 2020 Census and preparation of annual estimates of population and housing units.This dataset is under development and currently includes adult and juvenile corrections facilities in the state. Work is ongoing to add additional facility types and is scheduled to be complete by May 2019.
Facebook
TwitterLands approved or conveyed to the State of Alaska for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.
This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.
Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.
Facebook
TwitterMarch 2024
Facebook
TwitterThe Digital Geologic-GIS Map of Santa Cruz Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (scis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (scis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (scis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (scis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (scis_geology_metadata.txt or scis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release for the reconnaissance geologic map of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho, is a Geologic Map Schema (GeMS, 2020)-compliant version of the geologic map published in U.S. Geological Survey (USGS) Scientific Investigations Report Map SIR 2007-5046 (Simmons, et al, 2007). The database represents the geology for the 625,177-acre (2,530 square kilometers), geologically complex Hells Canyon Study Area in two plates, at a publication scale of 1:48,000. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. References: Simmons, G.C., Gualtieri, J.L., Close, T.J., Federspiel, F.E., and Leszcykowski, A.M., 2007, Mineral resources of the Hells Canyon study area, Wallowa County, Oregon, and Id ...
Facebook
TwitterThe Digital Geologic-GIS Map of the Stonewall Quadrangle, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (stnw_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (stnw_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (lyjo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (lyjo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (stnw_geology_metadata_faq.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (stnw_geology_metadata.txt or stnw_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of Bent's Old Fort National Historic Site, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (beol_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (beol_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (beol_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (beol_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (beol_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (beol_surficial_geology_metadata_faq.pdf). Please read the beol_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Colorado State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (beol_surficial_geology_metadata.txt or beol_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
Raw DEM and Soils data
Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
ArcGIS Map Packages
Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web
Facebook
TwitterThis dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.