7 datasets found
  1. Data from: Novel Corona Virus 2019 Dataset

    • kaggle.com
    zip
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SRK (2020). Novel Corona Virus 2019 Dataset [Dataset]. https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
    Explore at:
    zip(3155 bytes)Available download formats
    Dataset updated
    Jan 30, 2020
    Authors
    SRK
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. This data is extracted from the same link and made available in csv format.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus.

    The data is available from 22 Jan 2020.

    Acknowledgements

    Johns Hopkins university has made the data available in google sheets format here. Sincere thanks to them.

    Thanks to WHO, CDC, NHC and DXY for making the data available in first place.

    Picture courtesy : Johns Hopkins University dashboard

    Inspiration

    Some insights could be

    1. Changes in number of affected cases over time
    2. Change in cases over time at country level
    3. Latest number of affected cases
  2. z

    Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3725831
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodo
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  3. a

    ‘COVID-19 Coronavirus Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 Coronavirus Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-coronavirus-dataset-4bcc/6a53de38/?iid=022-083&v=presentation
    Explore at:
    Dataset updated
    Feb 14, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    Description

    Analysis of ‘COVID-19 Coronavirus Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/vignesh1694/covid19-coronavirus on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    A SARS-like virus outbreak originating in Wuhan, China, is spreading into neighboring Asian countries, and as far afield as Australia, the US a and Europe.

    On 31 December 2019, the Chinese authorities reported a case of pneumonia with an unknown cause in Wuhan, Hubei province, to the World Health Organisation (WHO)’s China Office. As more and more cases emerged, totaling 44 by 3 January, the country’s National Health Commission isolated the virus causing fever and flu-like symptoms and identified it as a novel coronavirus, now known to the WHO as 2019-nCoV.

    The following dataset shows the numbers of spreading coronavirus across the globe.

    Content

    Sno - Serial number Date - Date of the observation Province / State - Province or state of the observation Country - Country of observation Last Update - Recent update (not accurate in terms of time) Confirmed - Number of confirmed cases Deaths - Number of death cases Recovered - Number of recovered cases

    Acknowledgements

    Thanks to John Hopkins CSSE for the live updates on Coronavirus and data streaming. Source: https://github.com/CSSEGISandData/COVID-19 Dashboard: https://public.tableau.com/profile/vignesh.coumarane#!/vizhome/DashboardToupload/Dashboard12

    Inspiration

    Inspired by the following work: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    --- Original source retains full ownership of the source dataset ---

  4. A

    ‘COVID-19 in Turkey’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘COVID-19 in Turkey’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-in-turkey-e9c6/1d45f4c8/?iid=063-408&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Türkiye
    Description

    Analysis of ‘COVID-19 in Turkey’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/gkhan496/covid19-in-turkey on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    COVID-19 data in Turkey. Daily Covid-19 data published by our health ministry.

    Content

    time_series_covid_19_confirmed_tr
    time_series_covid_19_recovered_tr
    time_series_covid_19_deaths_tr
    time_series_covid_19_intubated_tr
    time_series_covid_19_intensive_care_tr.csv 
    time_series_covid_19_tested_tr.csv 
    test_numbers : Number of test (daily)
    

    Total data

    covid_19_data_tr

    Github

    Github repo : https://github.com/gkhan496/Covid19-in-Turkey/

    Acknowledgements

    We would like to thank our health ministry and all health workers.

    Country level datasets

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases France - https://www.kaggle.com/lperez/coronavirus-france-dataset Tunisia - https://www.kaggle.com/ghassen1302/coronavirus-tunisia Japan - https://www.kaggle.com/tsubasatwi/close-contact-status-of-corona-in-japan South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2311214%2Feaf61a1cf97850b64aefd52d3de5890b%2FXMhaJ.png?generation=1586182028591623&alt=media" alt="">

    Source : https://fastlifehacks.com/n95-vs-ffp/

    https://covid19.saglik.gov.tr https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html?fbclid=IwAR0k49fzqTxI4HBBZF7n4hLX4Zj0Q2KII_WOEo7agklC20KODB3TOeF8RrU#/bda7594740fd40299423467b48e9ecf6 http://who.int/ --situation reports https://evrimagaci.org/covid19#turkey-statistics

    --- Original source retains full ownership of the source dataset ---

  5. COVID-19. Novel coronavirus dataset Jan-Feb 2020

    • kaggle.com
    Updated Feb 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukharbek Organokov (2020). COVID-19. Novel coronavirus dataset Jan-Feb 2020 [Dataset]. https://www.kaggle.com/muhakabartay/novel-coronavirus-2019ncov/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 10, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mukharbek Organokov
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronaviruses are a large family of viruses found in both animals and humans. Some infect people and are known to cause illness ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS).

    A novel coronavirus (CoV) is a new strain of coronavirus that has not been previously identified in humans. The new, or “novel” coronavirus, now called 2019-nCoV, had not previously detected before the outbreak was reported in Wuhan, China in December 2019.

    Short story: On December 31, 2019, the WHO was informed of an outbreak of “pneumonia of unknown cause” detected in Wuhan City, Hubei Province, China – the seventh-largest city in China with 11 million residents. As of January 23, there are over 800 cases of 2019-nCoV confirmed globally, including cases in at least 20 regions in China and nine countries/territories. The first reported infected individuals, some of whom showed symptoms as early as December 8, were discovered to be among stallholders from the Wuhan South China Seafood Market. Subsequently, the wet market was closed on Jan 1. The virus causing the outbreak was quickly determined to be a novel coronavirus. On January 10, gene sequencing further determined it to be the new Wuhan coronavirus, namely 2019-nCoV, a betacoronavirus, related to the Middle Eastern Respiratory Syndrome virus (MERS-CoV) and the Severe Acute Respiratory Syndrome virus (SARS-CoV). However, the mortality and transmissibility of 2019-nCoV are still unknown, and likely to vary from those of the prior referenced coronaviruses.

    See more information on the webpage of World Health Organization

    Content

    John Hopkins University Google Sheet of time series confirmed|recovered|death case numbers converted to CSV format.

    The data operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE).

    See also GitHub.

    Track virus here.

    Acknowledgements

    Thanks to
    - JHU CCSE
    - WHO
    - Centers for Disease Control and Prevention (CDC)
    - European Centre for Disease Prevention and Control (ECDC)
    - DXY
    - National Health Commission of the People's Republic of China (NHC)

  6. e

    FR-SARS-CoV-2

    • data.europa.eu
    excel xlsx
    Updated Feb 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivier Roussel (2020). FR-SARS-CoV-2 [Dataset]. https://data.europa.eu/data/datasets/5e5ad4298b4c4177948e23f7?locale=da
    Explore at:
    excel xlsx(26425), excel xlsx(29600), excel xlsx(29878), excel xlsx(22709), excel xlsx(30505), excel xlsx(28333), excel xlsx(23079)Available download formats
    Dataset updated
    Feb 1, 2020
    Dataset authored and provided by
    Olivier Roussel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  7. e

    De-SARS-CoV-2

    • data.europa.eu
    excel xlsx
    Updated Feb 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivier Roussel (2020). De-SARS-CoV-2 [Dataset]. https://data.europa.eu/data/datasets/5e5ad4298b4c4177948e23f7?locale=de
    Explore at:
    excel xlsx(22709), excel xlsx(29878), excel xlsx(28333), excel xlsx(29600), excel xlsx(26425), excel xlsx(30505), excel xlsx(23079)Available download formats
    Dataset updated
    Feb 1, 2020
    Dataset authored and provided by
    Olivier Roussel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
SRK (2020). Novel Corona Virus 2019 Dataset [Dataset]. https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
Organization logo

Data from: Novel Corona Virus 2019 Dataset

Day level information on covid-19 affected cases

Related Article
Explore at:
zip(3155 bytes)Available download formats
Dataset updated
Jan 30, 2020
Authors
SRK
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

Johns Hopkins University has made an excellent dashboard using the affected cases data. This data is extracted from the same link and made available in csv format.

Content

2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus.

The data is available from 22 Jan 2020.

Acknowledgements

Johns Hopkins university has made the data available in google sheets format here. Sincere thanks to them.

Thanks to WHO, CDC, NHC and DXY for making the data available in first place.

Picture courtesy : Johns Hopkins University dashboard

Inspiration

Some insights could be

  1. Changes in number of affected cases over time
  2. Change in cases over time at country level
  3. Latest number of affected cases
Search
Clear search
Close search
Google apps
Main menu