13 datasets found
  1. E

    MODIS Aqua 8-Day 1 km Composite Northwest Atlantic

    • erddap.maracoos.org
    • data.ioos.us
    • +1more
    Updated Jul 3, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Oliver (2002). MODIS Aqua 8-Day 1 km Composite Northwest Atlantic [Dataset]. https://erddap.maracoos.org/erddap/info/MODIS_AQUA_8_day/index.html
    Explore at:
    Dataset updated
    Jul 3, 2002
    Dataset authored and provided by
    Matthew Oliver
    Time period covered
    Jul 3, 2002 - Oct 2, 2022
    Area covered
    Variables measured
    evi, pic, poc, sst, M_WK, ndvi, time, M_WK_G, red_ch, Rrs_412, and 31 more
    Description

    Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 8-Day 1 km Composite ocean color and sst calculation by SeaDas; Regridded to Mercator lon/lat projection. Processed at the University of Delaware. Computed for the Mid-Atlantic Regional Association Coastal Ocean Observing System. cdm_data_type=Grid Conventions=CF-1.6, COARDS, ACDD-1.3 createAgency=0.0 Easternmost_Easting=-50.00000000000001 geospatial_lat_max=51.999999999992106 geospatial_lat_min=16.55876921586688 geospatial_lat_units=degrees_north geospatial_lon_max=-50.00000000000001 geospatial_lon_min=-99.0 geospatial_lon_resolution=0.009801960392078415 geospatial_lon_units=degrees_east groundstation=University of Delaware, Newark, Center for Remote Sensing history=satellite observation NASA MODIS-Aqua instrument infoUrl=https://aqua.nasa.gov/modis inputCalibrationFile=0.0 inputMET1=0.0 inputOZONE1=0.0 institution=University of Delaware keywords_vocabulary=GCMD Science Keywords NCO=netCDF Operators version 4.7.5 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco) nco_openmp_thread_number=1 Northernmost_Northing=51.999999999992106 product_list=chl_oc3,a_412_qaa,a_443_qaa,a_469_qaa,a_488_qaa,a_531_qaa,a_547_qaa,a_555_qaa,a_645_qaa,a_667_qaa,a_678_qaa,bb_547_qaa,aph_443_qaa,adg_412_qaa,c_547_qaa,Rrs_412,Rrs_443,Rrs_469,Rrs_488,Rrs_531,Rrs_547,Rrs_555,Rrs_645,Rrs_667,Rrs_678,Rrs_748,Rrs_859,ndvi,evi,pic,poc,l2_flags,sst,red_ch,green_ch,blue_ch,M_WK,M_WK_G software=0.0 source=satellite observation NASA MODIS-Aqua instrument sourceUrl=(local files) Southernmost_Northing=16.55876921586688 standard_name_vocabulary=CF Standard Name Table v29 time_coverage_end=2022-10-02T23:59:59Z time_coverage_start=2002-07-03T23:59:59Z url=http://orb.ceoe.udel.edu/ Westernmost_Easting=-99.0

  2. A

    Enhanced Vegetation Index (Global - 16-Day, MOD13Q1) MODIS Terra 🌐

    • data.amerigeoss.org
    wms
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Enhanced Vegetation Index (Global - 16-Day, MOD13Q1) MODIS Terra 🌐 [Dataset]. https://data.amerigeoss.org/dataset/fc3d365e-a302-4186-bf3d-65ed86f8d412
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Food and Agriculture Organization
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The Enhanced Vegetation Index (L3, 16 Day) layer is created from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1) data which are generated every 16 days at 250 meter (m) spatial resolution as a Level 3 product. The MOD13Q1 product provides the Enhanced Vegetation Index (EVI), which has improved sensitivity over high biomass regions. The algorithm chooses the best available pixel value from all the acquisitions from the 16-day period. The criteria used is low clouds, low view angle, and the highest EVI value.

    The Enhanced Vegetation Index (EVI) minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin clouds. The MODIS EVI product is computed from surface reflectances corrected for molecular scattering, ozone absorption, and aerosols.

    References: MOD13Q1 doi:10.5067/MODIS/MOD13Q1.061

    More information can be found at lpdaac.usgs.gov

    This data is provided by the NASA Global Imagery Browse Services for EOSDIS

    The Global Imagery Browse Services GIBS system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.

    Contact points:

    Resource Contact: EOSDIS NASA GIBS

    Online resources:

  3. E

    POLY4 Chlorophyll-a MODIS-Aqua Data in the Northwest Atlantic, 2002-2023

    • cioosatlantic.ca
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephanie Clay (2025). POLY4 Chlorophyll-a MODIS-Aqua Data in the Northwest Atlantic, 2002-2023 [Dataset]. https://cioosatlantic.ca/erddap/info/bio_remote_sensing_modis_aqua_chl_poly4/index.html
    Explore at:
    Dataset updated
    Jan 28, 2025
    Authors
    Stephanie Clay
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 4, 2002 - Dec 31, 2023
    Area covered
    Variables measured
    time, chlor_a, latitude, longitude
    Description

    NWA Moderate Resolution Imaging Spectroradiometer (MODIS)-AQUA CHL_POLY4 cdm_data_type=Grid Conventions=CF-1.6, COARDS, ACDD-1.3 Easternmost_Easting=-42.020833333333336 geographic_crs_epsg_code=EPSG:4326 geospatial_lat_max=81.97916666666667 geospatial_lat_min=39.020833333333336 geospatial_lat_resolution=0.04166666666666667 geospatial_lat_units=degrees_north geospatial_lon_max=-42.020833333333336 geospatial_lon_min=-94.97916666666667 geospatial_lon_resolution=0.04166666666666667 geospatial_lon_units=degrees_east history=Created with make_mapped_netcdf.R. Input data are 4km-resolution level-3 binned remote sensing reflectances (Rrs) from NASA OBPG, subset to the region of interest and used in conjunction with the most recent set of regionally-tuned parameters to generate the level-3 binned product. The data are then mapped to a Plate Carrée projection using a nearest-neighbour method implemented in bin_to_raster() from the oceancolouR R package. infoUrl=https://bio-rsg.github.io/ institution=dfo_bio keywords_vocabulary=GCMD Science Keywords map_projection=Equidistant Cylindrical (Plate Carrée) mission=AQUA Northernmost_Northing=81.97916666666667 platform=AQUA POLY4v2_coefficients=0.49318,-3.86911,-0.83267,1.19094,0.9436 processing_level=L3 Mapped product_name=AQUA_MODIS.20231231.L3b.DAY.CHL_POLY4.NWA.mapped.nc projected_crs_epsg_code=EPSG:4087 references=Clay, S.; Peña, A.; DeTracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. region=Northwest Atlantic reprocessing=R2022.0 sensor=MODIS source=POLY4v2 chlorophyll-a generated using remote sensing reflectance (Rrs) data from NASA Ocean Biology Processing Group (OBPG, https://oceancolor.gsfc.nasa.gov) sourceUrl=(local files) Southernmost_Northing=39.020833333333336 spatial_resolution=4.64 km at equator standard_name_vocabulary=CF Standard Name Table v79 temporal_range=day time=2023-12-31 time_coverage_end=2023-12-31T00:00:00Z time_coverage_start=2002-07-04T00:00:00Z tools=https://github.com/BIO-RSG/oceancolouR Westernmost_Easting=-94.97916666666667

  4. s

    MSZSI: Multi-Scale Zonal Statistics [AgriClimate] Inventory

    • repository.soilwise-he.eu
    • dataverse.harvard.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MSZSI: Multi-Scale Zonal Statistics [AgriClimate] Inventory [Dataset]. http://doi.org/10.7910/DVN/M4ZGXP
    Explore at:
    Description

    MSZSI: Multi-Scale Zonal Statistics [AgriClimate] Inventory

    --------------------------------------------------------------------------------------
    MSZSI is a data extraction tool for Google Earth Engine that aggregates time-series remote sensing information to multiple administrative levels using the FAO GAUL data layers. The code at the bottom of this page (metadata) can be pasted into the Google Earth Engine JavaScript code editor and ran at https://code.earthengine.google.com/.

    Please refer to the associated publication:
    Peter, B.G., Messina, J.P., Breeze, V., Fung, C.Y., Kapoor, A. and Fan, P., 2024. Perspectives on modifiable spatiotemporal unit problems in remote sensing of agriculture: evaluating rice production in Vietnam and tools for analysis. Frontiers in Remote Sensing, 5, p.1042624.
    https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2024.1042624

    Input options:
    [1] Country of interest
    [2] Start and end year
    [3] Start and end month
    [4] Option to mask data to a specific land-use/land-cover type
    [5] Land-use/land-cover type code from CGLS LULC
    [6] Image collection for data aggregation
    [7] Desired band from the image collection
    [8] Statistics type for the zonal aggregations
    [9] Statistic to use for annual aggregation
    [10] Scaling options
    [11] Export folder and label suffix

    Output: Two CSVs containing zonal statistics for each of the FAO GAUL administrative level boundaries
    Output fields: system:index, 0-ADM0_CODE, 0-ADM0_NAME, 0-ADM1_CODE, 0-ADM1_NAME, 0-ADMN_CODE, 0-ADMN_NAME, 1-AREA_PERCENT_LULC, 1-AREA_SQM_LULC, 1-AREA_SQM_ZONE, 2-X_2001, 2-X_2002, 2-X_2003, ..., 2-X_2020, .geo



    PREPROCESSED DATA DOWNLOAD

    The datasets available for download contain zonal statistics at 2 administrative levels (FAO GAUL levels 1 and 2). Select countries from Southeast Asia and Sub-Saharan Africa (Cambodia, Indonesia, Lao PDR, Myanmar, Philippines, Thailand, Vietnam, Burundi, Kenya, Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, Zimbabwe) are included in the current version, with plans to extend the dataset to contain global metrics. Each zip file is described below and two example NDVI tables are available for preview.

    Key: [source, data, units, temporal range, aggregation, masking, zonal statistic, notes]

    Currently available:
    MSZSI-V2_V-NDVI-MEAN.tar: [NASA-MODIS, NDVI, index, 2001–2020, annual mean, agriculture, mean, n/a]
    MSZSI-V2_T-LST-DAY-MEAN.tar: [NASA-MODIS, LST Day, °C, 2001–2020, annual mean, agriculture, mean, n/a]
    MSZSI-V2_T-LST-NIGHT-MEAN.tar: [NASA-MODIS, LST Night, °C, 2001–2020, annual mean, agriculture, mean, n/a]
    MSZSI-V2_R-PRECIP-SUM.tar: [UCSB-CHG-CHIRPS, Precipitation, mm, 2001–2020, annual sum, agriculture, mean, n/a]
    MSZSI-V2_S-BDENS-MEAN.tar: [OpenLandMap, Bulk density, g/cm3, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-ORGC-MEAN.tar: [OpenLandMap, Organic carbon, g/kg, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-PH-MEAN.tar: [OpenLandMap, pH in H2O, pH, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-WATER-MEAN.tar: [OpenLandMap, Soil water, % at 33kPa, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-SAND-MEAN.tar: [OpenLandMap, Sand, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-SILT-MEAN.tar: [OpenLandMap, Silt, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_S-CLAY-MEAN.tar: [OpenLandMap, Clay, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
    MSZSI-V2_E-ELEV-MEAN.tar: [MERIT, [elevation, slope, flowacc, HAND], [m, degrees, km2, m], static, n/a, agriculture, mean, n/a]

    Coming soon
    MSZSI-V2_C-STAX-MEAN.tar: [OpenLandMap, Soil taxonomy, category, static, n/a, agriculture, area sum, n/a]
    MSZSI-V2_C-LULC-MEAN.tar: [CGLS-LC100-V3, LULC, category, 2015–2019, mode, none, area sum, n/a]




    Data sources:

  5. https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1
  6. https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2
  7. https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD
  8. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
  9. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
  10. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02
  11. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
  12. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02
  13. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_SAND-WFRACTION_USDA-3A1A1A_M_v02
  14. https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-SOILTAX_C_v01
  15. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
  16. https://developers.google.com/earth-engine/datasets/catalog/MERIT_Hydro_v1_0_1
  17. https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level0
  18. https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level1
  19. https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level2

  20. Project information:
    SEAGUL: Southeast Asia Globalization, Urbanization, Land and Environment Changes
    http://seagul.info/; https://lcluc.umd.edu/projects/divergent-local-responses-globalization-urbanization-land-transition-and-environmental
    This project was made possible by the the NASA Land-Cover/Land-Use Change Program (Grant #: 80NSSC20K0740)

    For an additional interactive visualization, visit: https://cartoscience.users.earthengine.app/view/maup-mapper-multi-scale-modis-ndvi




    Google Earth Engine code
     /*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// MSZSI: Multi-Scale Zonal Statistics Inventory Authors: Brad G. Peter, Department of Geography, University of Alabama Joseph Messina, Department of Geography, University of Alabama Austin Raney, Department of Geography, University of Alabama Rodrigo E. Principe, AgriCircle AG Peilei Fan, Department of Geography, Environment, and Spatial Sciences, Michigan State University Citation: Peter, Brad; Messina, Joseph; Raney, Austin; Principe, Rodrigo; Fan, Peilei, 2021, 'MSZSI: Multi-Scale Zonal Statistics Inventory', https://doi.org/10.7910/DVN/YCUBXS, Harvard Dataverse, V# SEAGUL: Southeast Asia Globalization, Urbanization, Land and Environment Changes http://seagul.info/ https://lcluc.umd.edu/projects/divergent-local-responses-globalization-urbanization-land-transition-and-environmental This project was made possible by the the NASA Land-Cover/Land-Use Change Program (Grant #: 80NSSC20K0740) 

  • A

    Enhanced Vegetation Index (Global - L3, Monthly, MYD13A3) MODIS Aqua 🌐

    • data.amerigeoss.org
    wms
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Enhanced Vegetation Index (Global - L3, Monthly, MYD13A3) MODIS Aqua 🌐 [Dataset]. https://data.amerigeoss.org/ru/dataset/34411197-131b-45ff-9216-993c7b40cc2b
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Food and Agriculture Organization
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The Enhanced Vegetation Index (L3, Monthly) layer is created from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3) data which are provided monthly at 1 kilometer (km) spatial resolution as a gridded Level 3 product in the sinusoidal projection. In generating this monthly product, the algorithm ingests all the Aqua MODIS Vegetation Indices 16-day products that overlap the month and employs a weighted temporal average.

    The Enhanced Vegetation Index (EVI) minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin clouds. The MODIS EVI product is computed from surface reflectances corrected for molecular scattering, ozone absorption, and aerosols.

    References: MYD13A3 doi:10.5067/MODIS/MYD13A3.061

    More information can be found at lpdaac.usgs.gov

    This data is provided by the NASA Global Imagery Browse Services for EOSDIS

    The Global Imagery Browse Services GIBS system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.

    Contact points:

    Resource Contact: EOSDIS NASA GIBS

    Online resources:

  • Z

    Supporting Data for MODIS Aqua L2 SST Correction Project

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cornillon, Peter (2023). Supporting Data for MODIS Aqua L2 SST Correction Project [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7647184
    Explore at:
    Dataset updated
    Feb 19, 2023
    Dataset authored and provided by
    Cornillon, Peter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset consists of two parts:

    A) Three data objects needed to ‘fix’ several issues associated with the L2 sea surface temperature (SST) dataset obtained from the MODIS Aqua instrument by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard Space Flight Center. These files are required by the Matlab script, build_and_fix_orbits.m, in the GitHub repo git@github.com:pcornillon/MODIS_L2.git. This script ‘unmasks’ pixels improperly flagged as bad in the vicinity of large SST gradients and those flagged as bad because the difference between the retrieved SST and a reference field exceeds a given threshold. The script also regrids the L2 fields to compensate for the bow-tie effect, which tends to jumble the pixel locations in the along-track direction. The files are:

    1) weights_and_locations_from_31191.mat - used to correct for the bow-tie effect.

    2) SST_Range_for_Declouding.mat - are monthly climatologies of the minimum and maximum temperatures in 5x5 degree cells determined from the MODIS Aqua L2 SST dataset for 2002-2019. These fields are used to unmask pixels flagged as cloudy based on the reference SST test. The original test used was for a fixed SST range independent of time-of-year and location.

    3) Separation_and_Angle_Arrays.n4 - a file containing several fields, one for the along-track separation of pixels at each pixel location, a second for the along-scan separation and a third for the angle the perpendicular to the scan line makes counterclockwise of east. These data are used to determine the eastward and northward components of the SST gradient determined from the 'fixed' SST fields.

    B) A set of files used to test build_and_fix_orbits.m. These files are contained in four folders zipped into one file, MODIS_R2019.zip, plus the output file, AQUA_MODIS.20100619T052031.L2.SST.nc4, written by build_and_fix_orbits.m. The .zip file contains the data for one complete MODIS Aqua orbit beginning at 05h20 GMT on 19 June 2010. The folders in this file are:

    1) Data_from_OBPG_for_PO-DAAC - metadata files copied from a portion of the OBPG SST granules.

    2) Day - daytime granules obtained from the OBPG’s web site.

    3) Night - nighttime granules obtained from the OBPG’s web site.

    4) Orbits - a files indicating which OBPG granules make up individual orbits for June 2010

  • c

    POLY4 Chlorophyll-A : données Modis-Aqua dans l'Atlantique Nord-Ouest,...

    • catalogue.cioos.ca
    erddap, html
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emmanuel Devred; Stephanie Clay (2024). POLY4 Chlorophyll-A : données Modis-Aqua dans l'Atlantique Nord-Ouest, depuis 2002 [Dataset]. https://catalogue.cioos.ca/dataset/ca-cioos_f869feaf-4534-4f81-8276-a1bd08c488a9
    Explore at:
    erddap, htmlAvailable download formats
    Dataset updated
    Feb 27, 2024
    Dataset provided by
    cioos-atlantic
    CIOOS-Atlantic
    Authors
    Emmanuel Devred; Stephanie Clay
    Time period covered
    Jul 4, 2002 - Present
    Area covered
    Variables measured
    Ocean colour, Phytoplankton biomass and diversity
    Description

    Chlorophyll-a concentration (Chl-a) is used as a proxy for phytoplankton biomass to track blooms and monitor the state of the ecosystem. This dataset contains daily satellite Chl-a from July 2002 to July 2023 (further updates will be provided periodically). The data is at a 4.64-km^2 spatial resolution covering an area of the Northwest Atlantic from 39-82°N, 42-95°W. Chl-a was generated by applying the POLY4 algorithm (Clay et al., 2019, see resources) on level-3 binned remote sensing reflectance (Rrs) data retrieved by the Moderate Resolution Imaging Spectroradiometer sensor (MODIS) onboard the Aqua satellite, freely downloaded courtesy of NASA's Ocean Biology Processing Group (OBPG, https://oceancolor.gsfc.nasa.gov/). Regionally-tuned coefficients for POLY4 were generated by matching level-2 MODIS-Aqua pixels (i.e. individual satellite passes) to in situ HPLC (High Performance Liquid Chromatography) Chl-a samples within the region of interest according to the procedure described in Clay et al. POLY4 Chl-a was then optimized by simultaneously forcing it to the 1:1 line against in situ Chl-a to reduce the negative bias observed in higher concentrations. The Chl-a data were then projected onto an Equidistant Cylindrical grid (4.64-km^2) using a weighted mean for overlapping bins. This model and the Northwest Atlantic coefficients are available in the R package oceancolouR (https://github.com/BIO-RSG/oceancolouR).

  • C

    POLY4 Chlorophyll-A : données Modis-Aqua dans l'Atlantique Nord-Ouest,...

    • catalogue.cioosatlantic.ca
    erddap, html
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephanie Clay; Emmanuel Devred (2025). POLY4 Chlorophyll-A : données Modis-Aqua dans l'Atlantique Nord-Ouest, 2002-2023 [Dataset]. https://catalogue.cioosatlantic.ca/en/dataset/ca-cioos_f869feaf-4534-4f81-8276-a1bd08c488a9
    Explore at:
    erddap, htmlAvailable download formats
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Fisheries and Oceans Canada
    Authors
    Stephanie Clay; Emmanuel Devred
    Time period covered
    Jul 4, 2002 - Dec 31, 2023
    Area covered
    Variables measured
    Ocean colour, Phytoplankton biomass and diversity
    Description

    Chlorophyll-a concentration (Chl-a) is used as a proxy for phytoplankton biomass to track blooms and monitor the state of the ecosystem. This dataset contains daily satellite Chl-a from July 2002 to Dec 2023. The data is at a 4.64-km^2 spatial resolution covering an area of the Northwest Atlantic from 39-82°N, 42-95°W. Chl-a was generated by applying the POLY4 algorithm (Clay et al., 2019, see resources) on level-3 binned remote sensing reflectance (Rrs) data retrieved by the Moderate Resolution Imaging Spectroradiometer sensor (MODIS) onboard the Aqua satellite, freely downloaded courtesy of NASA's Ocean Biology Processing Group (OBPG, https://oceancolor.gsfc.nasa.gov/). Regionally-tuned coefficients for POLY4 were generated by matching level-2 MODIS-Aqua pixels (i.e. individual satellite passes) to in situ HPLC (High Performance Liquid Chromatography) Chl-a samples within the region of interest according to the procedure described in Clay et al. POLY4 Chl-a was then optimized by simultaneously forcing it to the 1:1 line against in situ Chl-a to reduce the negative bias observed in higher concentrations. The Chl-a data were then projected onto an Equidistant Cylindrical grid (4.64-km^2) using a nearest neighbour method. This model and the Northwest Atlantic coefficients are available in the R package oceancolouR (https://github.com/BIO-RSG/oceancolouR).

  • Z

    SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahuja, Akanksha (2024). SeasFire Cube: A Global Dataset for Seasonal Fire Modeling in the Earth System [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6834584
    Explore at:
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    Ahuja, Akanksha
    Gans, Fabian
    Alonso, Lazaro
    Papoutsis, Ioannis
    Weber, Ulrich
    Mihail, Dimitrios
    Prapas, Ioannis
    Cremer, Felix
    Panagiotou, Eleannna
    Kondylatos, Spyros
    Karasante, Ilektra
    Carvalhais, Nuno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    The SeasFire Cube is a scientific datacube for seasonal fire forecasting around the globe. Apart from seasonal fire forecasting, which is the aim of the SeasFire project, the datacube can be used for several other tasks. For example, it can be used to model teleconnections and memory effects in the earth system. Additionally, it can be used to model emissions from wildfires and the evolution of wildfire regimes.

    It has been created in the context of the SeasFire project, which deals with "Earth System Deep Learning for Seasonal Fire Forecasting" and is funded by the European Space Agency (ESA) in the context of ESA Future EO-1 Science for Society Call.

    It contains 21 years of data (2001-2021) in an 8-days time resolution and 0.25 degrees grid resolution. It has a diverse range of seasonal fire drivers. It expands from atmospheric and climatological ones to vegetation variables, socioeconomic and the target variables related to wildfires such as burned areas, fire radiative power, and wildfire-related CO2 emissions.

    Datacube properties
    

    Feature

    Value

    Spatial Coverage

    Global

    Temporal Coverage

    2001 to 2021

    Spatial Resolution

    0.25 deg x 0.25 deg

    Temporal Resolution

    8 days

    Number of Variables

    54

    Tutorial Link

    https://github.com/SeasFire/seasfire-datacube

        Full name
        DataArray name
        Unit
        Contact *
    
    
    
    
        Dataset: ERA5 Meteo Reanalysis Data
    
    
    
    
    
        Mean sea level pressure
        mslp
        Pa
        NOA
    
    
        Total precipitation
        tp
        m
        MPI
    
    
        Relative humidity
        rel_hum
        %
        MPI
    
    
        Vapor Pressure Deficit
        vpd
        hPa
        MPI
    
    
        Sea Surface Temperature
        sst
        K
        MPI
    
    
        Skin temperature
        skt
        K
        MPI
    
    
        Wind speed at 10 meters
        ws10
        m*s-2
        MPI
    
    
        Temperature at 2 meters - Mean
        t2m_mean
        K
        MPI
    
    
        Temperature at 2 meters - Min
        t2m_min
        K
        MPI
    
    
        Temperature at 2 meters - Max
        t2m_max
        K
        MPI
    
    
        Surface net solar radiation
        ssr
        MJ m-2
        MPI
    
    
        Surface solar radiation downwards
        ssrd
        MJ m-2
        MPI
    
    
        Volumetric soil water level 1
        swvl1
        m3/m3
        MPI
    
    
    
    
    
    
    
              Volumetric soil water level 2
    
    
    
    
        swvl2
        m3/m3
        MPI
    
    
        Volumetric soil water level 3
        swvl3
        m3/m3
        MPI
    
    
        Volumetric soil water level 4
        swvl4
        m3/m3
        MPI
    
    
        Land-Sea mask
        lsm
        0-1
        NOA
    
    
        Dataset: Copernicus
    

    CEMS

        Drought Code Maximum
        drought_code_max
        unitless
        NOA
    
    
        Drought Code Average
        drought_code_mean
        unitless
        NOA
    
    
        Fire Weather Index Maximum
        fwi_max
        unitless
        NOA
    
    
        Fire Weather Index Average
        fwi_mean
        unitless
        NOA
    
    
        Dataset: CAMS: Global Fire Assimilation System (GFAS)
    
    
    
    
    
        Carbon dioxide emissions from wildfires
        cams_co2fire
        kg/mÂČ
        NOA
    
    
        Fire radiative power
        cams_frpfire
        W/mÂČ
        NOA
    
    
        Dataset: FireCCI - European Space Agency’s Climate Change Initiative
    
    
    
    
    
        Burned Areas from Fire Climate Change Initiative (FCCI)
        fcci_ba
        ha
        NOA
    
    
        Valid mask of FCCI burned areas
        fcci_ba_valid_mask
        0-1
        NOA
    
    
    
        Fraction of burnable area
        fcci_fraction_of_burnable_area
        %
        NOA
    
    
        Number of patches
        fcci_number_of_patches
        N
        NOA
    
    
        Fraction of observed area
        fcci_fraction_of_observed_area
        %
        NOA
    
    
        Dataset: Nasa MODIS MOD11C1, MOD13C1, MCD15A2
    
    
    
    
    
        Land Surface temperature at day
        lst_day
        K
        MPI
    
    
        Leaf Area Index
        lai
        mÂČ/mÂČ
        MPI
    
    
        Normalized Difference Vegetation Index
        ndvi
        unitless
        MPI
    
    
        Dataset: Nasa SEDAC Gridded Population of the World (GPW), v4
    
    
    
    
    
        Population density
        pop_dens
        persons per square kilometers
        NOA
    
    
        Dataset: Global Fire Emissions Database (GFED)
    
    
    
    
    
        Burned Areas from GFED (large fires only)
        gfed_ba
        hectares (ha)
        MPI
    
    
        Valid mask of GFED burned areas
        gfed_ba_valid_mask
        0-1
        NOA
    
    
        GFED basis regions
        gfed_region
        N
        NOA
    
    
        Dataset: Global Wildfire Information System (GWIS)
    
    
    
    
    
        Burned Areas from GWIS
        gwis_ba
        ha
        NOA
    
    
        Valid mask of GWIS burned areas
        gwis_ba_valid_mask
        0-1
        NOA
    
    
        Dataset: NOAA Climate Indices
    
    
    
    
    
        Arctic Oscillation Index
        oci_ao
        unitless
        NOA
    
    
        Western Pacific Index
        oci_wp
        unitless
        NOA
    
    
        Pacific North American Index
        oci_pna
        unitless
        NOA
    
    
        North Atlantic Oscillation
        oci_nao
        unitless
        NOA
    
    
        Southern Oscillation Index
        oci_soi
        unitless
        NOA
    
    
        Global Mean Land/Ocean Temperature
        oci_gmsst
        unitless
        NOA
    
    
        Pacific Decadal Oscillation
        oci_pdo
        unitless
        NOA
    
    
        Eastern Asia/Western Russia
        oci_ea
        unitless
        NOA
    
    
        East Pacific/North Pacific Oscillation
        oci_epo
        unitless
        NOA
    
    
        Nino 3.4 Anomaly
        oci_nino_34_anom
        unitless
        NOA
    
    
        Bivariate ENSO Timeseries
        oci_censo
        unitless
        NOA
    
    
        Dataset: ESA CCI
    
    
    
    
    
        Land Cover Class 0 - No data
        lccs_class_0
        %
        NOA
    
    
        Land Cover Class 1 - Agriculture
        lccs_class_1
        %
        NOA
    
    
        Land Cover Class 2 - Forest
        lccs_class_2
        %
        NOA
    
    
        Land Cover Class 3 - Grassland
        lccs_class_3
        %
        NOA
    
    
        Land Cover Class 4 - Wetlands
        lccs_class_4
        %
        NOA
    
    
        Land Cover Class 5 - Settlement
        lccs_class_5
        %
        NOA
    
    
        Land Cover Class 6 - Shrubland
        lccs_class_6
        %
        NOA
    
    
        Land Cover Class 7 - Sparse vegetation, bare areas, permanent snow and ice
        lccs_class_7
        %
        NOA
    
    
        Land Cover Class 8 - Water Bodies
        lccs_class_8
        %
        NOA
    
    
        Dataset: Biomes
    
    
    
    
    
        Dataset: Calculated
    
    
    
    
    
        Grid Area in square meters
        area
        mÂČ
        NOA
    

    *The datacube specifications (temporal, spatial resolution, chunk size) have been set up by the Max Planck Institut (MPI) team. For the variables that the contact is MPI, Lazaro Alonso (lalonso bgc-jena.mpg.de) has led the efforts to collect and process them. For the variables that the contact is NOA, Ilektra Karasante (ile.karasante noa.gr) has led the efforts to collect and process them.

  • Z

    Water vapor database for atmospheric correction of Landsat imagery

    • data.niaid.nih.gov
    • doi.pangaea.de
    Updated Jan 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stellmes, Marion (2021). Water vapor database for atmospheric correction of Landsat imagery [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_4468700
    Explore at:
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    Stellmes, Marion
    Ernst, Stefan
    Frantz, David
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Atmospheric correction is a crucial preprocessing step for the analysis of optical satellite imagery like Landsat. Among the radiance-modifying gases, atmospheric water vapor is spatially and temporally variable, and cannot be measured reliably from the Landsat sensors. As such, atmospheric correction of Landsat data requires spatially and temporally explicit auxiliary information about atmospheric water vapor content.

    We have compiled a water vapor dataset that can be readily used to perform atmospheric correction of Landsat images. The dataset was generated by a global processing of the MODIS MOD05/MYD05 collection 6.1 products (https://doi.org/10.1029/2002JD003023; MODIS Atmosphere L2 Water Vapor Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: doi:10.5067/MODIS/MOD05_L2.006, doi:10.5067/MODIS/MYD05_L2.006). The dataset is comprised of daily global water vapor data for February 2000 to December 2020 for each land-intersecting Worldwide Reference System 2 (WRS-2) scene, as well as a monthly climatology that can be used if no daily value is available.

    The dataset was generated by the Framework for Operational Radiometric Correction for Environmental monitoring (FORCE v. 2.0 / 3.6, https://github.com/davidfrantz/force, https://doi.org/10.3390/rs11091124), which is freely available software under the terms of the GNU General Public License v. >= 3. The water vapor dataset can be readily ingested into the FORCE Level 2 Processing System (Frantz et al. 2016, doi:10.1109/TGRS.2016.2530856) to perform atmospheric correction of Landsat imagery. This dataset is an update of https://doi.pangaea.de/10.1594/PANGAEA.893109 and should be used from now on.

  • MODIS Aqua rolling 8-day composite at 9KM

    • robots.ceoe.udel.edu
    Updated Dec 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA (2019). MODIS Aqua rolling 8-day composite at 9KM [Dataset]. http://robots.ceoe.udel.edu/erddap/info/Aqua_rolling8day_NASA/index.html
    Explore at:
    Dataset updated
    Dec 31, 2019
    Dataset authored and provided by
    NASAhttp://nasa.gov/
    Time period covered
    Jul 4, 2002 - Dec 31, 2019
    Area covered
    Variables measured
    sst, time, chl_ocx, latitude, longitude
    Description

    MODIS Aqua rolling 8-day composite at 9KM cdm_data_type=Grid Conventions=COARDS, CF-1.6, ACDD-1.3 Easternmost_Easting=179.95835876464844 geospatial_lat_max=89.95833587646484 geospatial_lat_min=-89.95833587646484 geospatial_lat_units=degrees_north geospatial_lon_max=179.95835876464844 geospatial_lon_min=-179.9583282470703 geospatial_lon_units=degrees_east history=Tue May 6 13:39:18 2025: ncks -v sst,chl_ocx /lustre/scratch/orb/aqua/9km/8day/aqua_9km_8day_2010.nc4 2010.extracted.nc4 Thu May 12 07:48:10 2022: ncrcat A2009359_2010001.nc4 A2009360_2010002.nc4 A2009361_2010003.nc4 A2009362_2010004.nc4 A2009363_2010005.nc4 A2009364_2010006.nc4 A2009365_2010007.nc4 A2010001_2010008.nc4 A2010002_2010009.nc4 A2010003_2010010.nc4 A2010004_2010011.nc4 A2010005_2010012.nc4 A2010006_2010013.nc4 A2010007_2010014.nc4 A2010008_2010015.nc4 A2010009_2010016.nc4 A2010010_2010017.nc4 A2010011_2010018.nc4 A2010012_2010019.nc4 A2010013_2010020.nc4 A2010014_2010021.nc4 A2010015_2010022.nc4 A2010016_2010023.nc4 A2010017_2010024.nc4 A2010018_2010025.nc4 A2010019_2010026.nc4 A2010020_2010027.nc4 A2010021_2010028.nc4 A2010022_2010029.nc4 A2010023_2010030.nc4 A2010024_2010031.nc4 A2010025_2010032.nc4 A2010026_2010033.nc4 A2010027_2010034.nc4 A2010028_2010035.nc4 A2010029_2010036.nc4 A2010030_2010037.nc4 A2010031_2010038.nc4 A2010032_2010039.nc4 A2010033_2010040.nc4 A2010034_2010041.nc4 A2010035_2010042.nc4 A2010036_2010043.nc4 A2010037_2010044.nc4 A2010038_2010045.nc4 A2010039_2010046.nc4 A2010040_2010047.nc4 A2010041_2010048.nc4 A2010042_2010049.nc4 A2010043_2010050.nc4 A2010044_2010051.nc4 A2010045_2010052.nc4 A2010046_2010053.nc4 A2010047_2010054.nc4 A2010048_2010055.nc4 A2010049_2010056.nc4 A2010050_2010057.nc4 A2010051_2010058.nc4 A2010052_2010059.nc4 A2010053_2010060.nc4 A2010054_2010061.nc4 A2010055_2010062.nc4 A2010056_2010063.nc4 A2010057_2010064.nc4 A2010058_2010065.nc4 A2010059_2010066.nc4 A2010060_2010067.nc4 A2010061_2010068.nc4 A2010062_2010069.nc4 A2010063_2010070.nc4 A2010064_2010071.nc4 A2010065_2010072.nc4 A2010066_2010073.nc4 A2010067_2010074.nc4 A2010068_2010075.nc4 A2010069_2010076.nc4 A2010070_2010077.nc4 A2010071_2010078.nc4 A2010072_2010079.nc4 A2010073_2010080.nc4 A2010074_2010081.nc4 A2010075_2010082.nc4 A2010076_2010083.nc4 A2010077_2010084.nc4 A2010078_2010085.nc4 A2010079_2010086.nc4 A2010080_2010087.nc4 A2010081_2010088.nc4 A2010082_2010089.nc4 A2010083_2010090.nc4 A2010084_2010091.nc4 A2010085_2010092.nc4 A2010086_2010093.nc4 A2010087_2010094.nc4 A2010088_2010095.nc4 A2010089_2010096.nc4 A2010090_2010097.nc4 A2010091_2010098.nc4 A2010092_2010099.nc4 A2010093_2010100.nc4 A2010094_2010101.nc4 A2010095_2010102.nc4 A2010096_2010103.nc4 A2010097_2010104.nc4 A2010098_2010105.nc4 A2010099_2010106.nc4 A2010100_2010107.nc4 A2010101_2010108.nc4 A2010102_2010109.nc4 A2010103_2010110.nc4 A2010104_2010111.nc4 A2010105_2010112.nc4 A2010106_2010113.nc4 A2010107_2010114.nc4 A2010108_2010115.nc4 A2010109_2010116.nc4 A2010110_2010117.nc4 A2010111_2010118.nc4 A2010112_2010119.nc4 A2010113_2010120.nc4 A2010114_2010121.nc4 A2010115_2010122.nc4 A2010116_2010123.nc4 A2010117_2010124.nc4 A2010118_2010125.nc4 A2010119_2010126.nc4 A2010120_2010127.nc4 A2010121_2010128.nc4 A2010122_2010129.nc4 A2010123_2010130.nc4 A2010124_2010131.nc4 A2010125_2010132.nc4 A2010126_2010133.nc4 A2010127_2010134.nc4 A2010128_2010135.nc4 A2010129_2010136.nc4 A2010130_2010137.nc4 A2010131_2010138.nc4 A2010132_2010139.nc4 A2010133_2010140.nc4 A2010134_2010141.nc4 A2010135_2010142.nc4 A2010136_2010143.nc4 A2010137_2010144.nc4 A2010138_2010145.nc4 A2010139_2010146.nc4 A2010140_2010147.nc4 A2010141_2010148.nc4 A2010142_2010149.nc4 A2010143_2010150.nc4 A2010144_2010151.nc4 A2010145_2010152.nc4 A2010146_2010153.nc4 A2010147_2010154.nc4 A2010148_2010155.nc4 A2010149_2010156.nc4 A2010150_2010157.nc4 A2010151_2010158.nc4 A2010152_2010159.nc4 A2010153_2010160.nc4 A2010154_2010161.nc4 A2010155_2010162.nc4 A2010156_2010163.nc4 A2010157_2010164.nc4 A2010158_2010165.nc4 A2010159_2010166.nc4 A2010160_2010167.nc4 A2010161_2010168.nc4 A2010162_2010169.nc4 A2010163_2010170.nc4 A2010164_2010171.nc4 A2010165_2010172.nc4 A2010166_2010173.nc4 A2010167_2010174.nc4 A2010168_2010175.nc4 A2010169_2010176.nc4 A2010170_2010177.nc4 A2010171_2010178.nc4 A2010172_2010179.nc4 A2010173_2010180.nc4 A2010174_2010181.nc4 A2010175_2010182.nc4 A2010176_2010183.nc4 A2010177_2010184.nc4 A2010178_2010185.nc4 A2010179_2010186.nc4 A2010180_2010187.nc4 A2010181_2010188.nc4 A2010182_2010189.nc4 A2010183_2010190.nc4 A2010184_2010191.nc4 A2010185_2010192.nc4 A2010186_2010193.nc4 A2010187_2010194.nc4 A2010188_2010195.nc4 A2010189_2010196.nc4 A2010190_2010197.nc4 A2010191_2010198.nc4 A2010192_2010199.nc4 A2010193_2010200.nc4 A2010194_2010201.nc4 A2010195_2010202.nc4 A2010196_2010203.nc4 A2010197_2010204.nc4 A2010198_2010205.nc4 A2010199_2010206.nc4 A2010200_2010207.nc4 A2010201_2010208.nc4 A2010202_2010209.nc4 A2010203_2010210.nc4 A2010204_2010211.nc4 A2010205_2010212.nc4 A2010206_2010213.nc4 A2010207_2010214.nc4 A2010208_2010215.nc4 A2010209_2010216.nc4 A2010210_2010217.nc4 A2010211_2010218.nc4 A2010212_2010219.nc4 A2010213_2010220.nc4 A2010214_2010221.nc4 A2010215_2010222.nc4 A2010216_2010223.nc4 A2010217_2010224.nc4 A2010218_2010225.nc4 A2010219_2010226.nc4 A2010220_2010227.nc4 A2010221_2010228.nc4 A2010222_2010229.nc4 A2010223_2010230.nc4 A2010224_2010231.nc4 A2010225_2010232.nc4 A2010226_2010233.nc4 A2010227_2010234.nc4 A2010228_2010235.nc4 A2010229_2010236.nc4 A2010230_2010237.nc4 A2010231_2010238.nc4 A2010232_2010239.nc4 A2010233_2010240.nc4 A2010234_2010241.nc4 A2010235_2010242.nc4 A2010236_2010243.nc4 A2010237_2010244.nc4 A2010238_2010245.nc4 A2010239_2010246.nc4 A2010240_2010247.nc4 A2010241_2010248.nc4 A2010242_2010249.nc4 A2010243_2010250.nc4 A2010244_2010251.nc4 A2010245_2010252.nc4 A2010246_2010253.nc4 A2010247_2010254.nc4 A2010248_2010255.nc4 A2010249_2010256.nc4 A2010250_2010257.nc4 A2010251_2010258.nc4 A2010252_2010259.nc4 A2010253_2010260.nc4 A2010254_2010261.nc4 A2010255_2010262.nc4 A2010256_2010263.nc4 A2010257_2010264.nc4 A2010258_2010265.nc4 A2010259_2010266.nc4 A2010260_2010267.nc4 A2010261_2010268.nc4 A2010262_2010269.nc4 A2010263_2010270.nc4 A2010264_2010271.nc4 A2010265_2010272.nc4 A2010266_2010273.nc4 A2010267_2010274.nc4 A2010268_2010275.nc4 A2010269_2010276.nc4 A2010270_2010277.nc4 A2010271_2010278.nc4 A2010272_2010279.nc4 A2010273_2010280.nc4 A2010274_2010281.nc4 A2010275_2010282.nc4 A2010276_2010283.nc4 A2010277_2010284.nc4 A2010278_2010285.nc4 A2010279_2010286.nc4 A2010280_2010287.nc4 A2010281_2010288.nc4 A2010282_2010289.nc4 A2010283_2010290.nc4 A2010284_2010291.nc4 A2010285_2010292.nc4 A2010286_2010293.nc4 A2010287_2010294.nc4 A2010288_2010295.nc4 A2010289_2010296.nc4 A2010290_2010297.nc4 A2010291_2010298.nc4 A2010292_2010299.nc4 A2010293_2010300.nc4 A2010294_2010301.nc4 A2010295_2010302.nc4 A2010296_2010303.nc4 A2010297_2010304.nc4 A2010298_2010305.nc4 A2010299_2010306.nc4 A2010300_2010307.nc4 A2010301_2010308.nc4 A2010302_2010309.nc4 A2010303_2010310.nc4 A2010304_2010311.nc4 A2010305_2010312.nc4 A2010306_2010313.nc4 A2010307_2010314.nc4 A2010308_2010315.nc4 A2010309_2010316.nc4 A2010310_2010317.nc4 A2010311_2010318.nc4 A2010312_2010319.nc4 A2010313_2010320.nc4 A2010314_2010321.nc4 A2010315_2010322.nc4 A2010316_2010323.nc4 A2010317_2010324.nc4 A2010318_2010325.nc4 A2010319_2010326.nc4 A2010320_2010327.nc4 A2010321_2010328.nc4 A2010322_2010329.nc4 A2010323_2010330.nc4 A2010324_2010331.nc4 A2010325_2010332.nc4 A2010326_2010333.nc4 A2010327_2010334.nc4 A2010328_2010335.nc4 A2010329_2010336.nc4 A2010330_2010337.nc4 A2010331_2010338.nc4 A2010332_2010339.nc4 A2010333_2010340.nc4 A2010334_2010341.nc4 A2010335_2010342.nc4 A2010336_2010343.nc4 A2010337_2010344.nc4 A2010338_2010345.nc4 A2010339_2010346.nc4 A2010340_2010347.nc4 A2010341_2010348.nc4 A2010342_2010349.nc4 A2010343_2010350.nc4 A2010344_2010351.nc4 A2010345_2010352.nc4 A2010346_2010353.nc4 A2010347_2010354.nc4 A2010348_2010355.nc4 A2010349_2010356.nc4 A2010350_2010357.nc4 A2010351_2010358.nc4 A2010352_2010359.nc4 A2010353_2010360.nc4 A2010354_2010361.nc4 A2010355_2010362.nc4 A2010356_2010363.nc4 A2010357_2010364.nc4 A2010358_2010365.nc4 /home/1097/workdir/seawifs_concat/aqua_8day.2010.concat.nc4 Wed May 11 10:18:06 2022: /home/1097/nco/nco-5.0.2/src/nco/.libs/lt-ncra 2010/A2010001.nc4 2009/A2009365.nc4 2009/A2009364.nc4 2009/A2009363.nc4 2009/A2009362.nc4 2009/A2009361.nc4 2009/A2009360.nc4 2009/A2009359.nc4 ../8day/2010/A2009359_2010001.nc4 infoUrl=https://www.nasa.gov/ institution=NASA keywords_vocabulary=GCMD Science Keywords NCO=netCDF Operators version 4.7.6 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco) Northernmost_Northing=89.95833587646484 sourceUrl=(local files) Southernmost_Northing=-89.95833587646484 standard_name_vocabulary=CF Standard Name Table v70 time_coverage_end=2019-12-31T05:00:00Z time_coverage_start=2002-07-04T04:00:00Z Westernmost_Easting=-179.9583282470703

  • g

    Dataset for modeling spatial and temporal variation in natural background...

    • gimi9.com
    Updated Sep 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Dataset for modeling spatial and temporal variation in natural background specific conductivity | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_dataset-for-modeling-spatial-and-temporal-variation-in-natural-background-specific-conduct/
    Explore at:
    Dataset updated
    Sep 1, 2018
    Description

    This file contains the data set used to develop a random forest model predict background specific conductivity for stream segments in the contiguous United States. This Excel readable file contains 56 columns of parameters evaluated during development. The data dictionary provides the definition of the abbreviations and the measurement units. Each row is a unique sample described as R** which indicates the NHD Hydrologic Unit (underscore), up to a 7-digit COMID, (underscore) sequential sample month. To develop models that make stream-specific predictions across the contiguous United States, we used StreamCat data set and process (Hill et al. 2016; https://github.com/USEPA/StreamCat). The StreamCat data set is based on a network of stream segments from NHD+ (McKay et al. 2012). These stream segments drain an average area of 3.1 km2 and thus define the spatial grain size of this data set. The data set consists of minimally disturbed sites representing the natural variation in environmental conditions that occur in the contiguous 48 United States. More than 2.4 million SC observations were obtained from STORET (USEPA 2016b), state natural resource agencies, the U.S. Geological Survey (USGS) National Water Information System (NWIS) system (USGS 2016), and data used in Olson and Hawkins (2012) (Table S1). Data include observations made between 1 January 2001 and 31 December 2015 thus coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data (https://modis.gsfc.nasa.gov/data/). Each observation was related to the nearest stream segment in the NHD+. Data were limited to one observation per stream segment per month. SC observations with ambiguous locations and repeat measurements along a stream segment in the same month were discarded. Using estimates of anthropogenic stress derived from the StreamCat database (Hill et al. 2016), segments were selected with minimal amounts of human activity (Stoddard et al. 2006) using criteria developed for each Level II Ecoregion (Omernik and Griffith 2014). Segments were considered as potentially minimally stressed where watersheds had 0 - 0.5% impervious surface, 0 – 5% urban, 0 – 10% agriculture, and population densities from 0.8 – 30 people/km2 (Table S3). Watersheds with observations with large residuals in initial models were identified and inspected for evidence of other human activities not represented in StreamCat (e.g., mining, logging, grazing, or oil/gas extraction). Observations were removed from disturbed watersheds, with a tidal influence or unusual geologic conditions such as hot springs. About 5% of SC observations in each National Rivers and Stream Assessment (NRSA) region were then randomly selected as independent validation data. The remaining observations became the large training data set for model calibration. This dataset is associated with the following publication: Olson, J., and S. Cormier. Modeling spatial and temporal variation in natural background specific conductivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 53(8): 4316-4325, (2019).

  • E

    Monthly Global Seascapes

    • cwcgom.aoml.noaa.gov
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Monthly Global Seascapes [Dataset]. https://cwcgom.aoml.noaa.gov/erddap/info/noaa_aoml_4729_9ee6_ab54/index.html
    Explore at:
    Dataset updated
    May 28, 2025
    Time period covered
    Sep 15, 2002 - Apr 15, 2025
    Area covered
    Variables measured
    P, time, CLASS, latitude, longitude
    Description

    Biogeographic framework. Space and time classified simultaneously from synoptic time series using hierarchical and topology preserving machine learning acknowledgement=The U.S. MBON projects are funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803) in partnership between NOAA, BOEM, and NASA cdm_data_type=Grid contact=Joaquin.Trinanes@noaa.gov/mkavanau@ceoas.oregonstate.edu Conventions=COARDS, CF-1.4, Unidata Dataset Discovery v1.0 Easternmost_Easting=179.975 geospatial_lat_max=89.975 geospatial_lat_min=-89.975 geospatial_lat_resolution=0.049999999999999996 geospatial_lat_units=degrees_north geospatial_lon_max=179.975 geospatial_lon_min=-179.975 geospatial_lon_resolution=0.049999999999999996 geospatial_lon_units=degrees_east infoUrl=https://cwcgom.aoml.noaa.gov/thredds/dodsC/SEASCAPE_MONTH/SEASCAPES.nc.html institution=NOAA CoastWatch, OSU, USF, NASA, UAF, IOOS, NMS keywords_vocabulary=GCMD Science Keywords Metadata_Conventions=COARDS, CF-1.4, Unidata Dataset Discovery v1.0 NCO=netCDF Operators version 4.7.5 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco) Northernmost_Northing=89.975 references=Kavanaugh M. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES Journal of Marine Science. DOI: 10.1093/icesjms/fsw086 reprocessing_date=2024-09-29 reprocessing_info=Reprocessed with MODIS Aqua R2022.0 source_data=MODIS, HYCOM, GOES, POES, SSMIS sourceUrl=https://cwcgom.aoml.noaa.gov/thredds/dodsC/SEASCAPE_MONTH/SEASCAPES.nc Southernmost_Northing=-89.975 spatial_resolution=5 km standard_name_vocabulary=CF-12 time_coverage_duration=P0Y1M0DT0H0M0S time_coverage_end=2025-04-15T12:00:00Z time_coverage_start=2002-09-15T12:00:00Z Westernmost_Easting=-179.975

  • Not seeing a result you expected?
    Learn how you can add new datasets to our index.

  • Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Oliver (2002). MODIS Aqua 8-Day 1 km Composite Northwest Atlantic [Dataset]. https://erddap.maracoos.org/erddap/info/MODIS_AQUA_8_day/index.html

    MODIS Aqua 8-Day 1 km Composite Northwest Atlantic

    Explore at:
    Dataset updated
    Jul 3, 2002
    Dataset authored and provided by
    Matthew Oliver
    Time period covered
    Jul 3, 2002 - Oct 2, 2022
    Area covered
    Variables measured
    evi, pic, poc, sst, M_WK, ndvi, time, M_WK_G, red_ch, Rrs_412, and 31 more
    Description

    Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 8-Day 1 km Composite ocean color and sst calculation by SeaDas; Regridded to Mercator lon/lat projection. Processed at the University of Delaware. Computed for the Mid-Atlantic Regional Association Coastal Ocean Observing System. cdm_data_type=Grid Conventions=CF-1.6, COARDS, ACDD-1.3 createAgency=0.0 Easternmost_Easting=-50.00000000000001 geospatial_lat_max=51.999999999992106 geospatial_lat_min=16.55876921586688 geospatial_lat_units=degrees_north geospatial_lon_max=-50.00000000000001 geospatial_lon_min=-99.0 geospatial_lon_resolution=0.009801960392078415 geospatial_lon_units=degrees_east groundstation=University of Delaware, Newark, Center for Remote Sensing history=satellite observation NASA MODIS-Aqua instrument infoUrl=https://aqua.nasa.gov/modis inputCalibrationFile=0.0 inputMET1=0.0 inputOZONE1=0.0 institution=University of Delaware keywords_vocabulary=GCMD Science Keywords NCO=netCDF Operators version 4.7.5 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco) nco_openmp_thread_number=1 Northernmost_Northing=51.999999999992106 product_list=chl_oc3,a_412_qaa,a_443_qaa,a_469_qaa,a_488_qaa,a_531_qaa,a_547_qaa,a_555_qaa,a_645_qaa,a_667_qaa,a_678_qaa,bb_547_qaa,aph_443_qaa,adg_412_qaa,c_547_qaa,Rrs_412,Rrs_443,Rrs_469,Rrs_488,Rrs_531,Rrs_547,Rrs_555,Rrs_645,Rrs_667,Rrs_678,Rrs_748,Rrs_859,ndvi,evi,pic,poc,l2_flags,sst,red_ch,green_ch,blue_ch,M_WK,M_WK_G software=0.0 source=satellite observation NASA MODIS-Aqua instrument sourceUrl=(local files) Southernmost_Northing=16.55876921586688 standard_name_vocabulary=CF Standard Name Table v29 time_coverage_end=2022-10-02T23:59:59Z time_coverage_start=2002-07-03T23:59:59Z url=http://orb.ceoe.udel.edu/ Westernmost_Easting=-99.0

    Search
    Clear search
    Close search
    Google apps
    Main menu