31 datasets found
  1. Most livable Indian cities on Global Liveability Index 2024, by score

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most livable Indian cities on Global Liveability Index 2024, by score [Dataset]. https://www.statista.com/statistics/1398617/india-most-livable-indian-cities-ranking/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    India
    Description

    As per the Global Liveability Index of 2024, five Indian cities figured on the list comprising 173 across the world. Indian megacities Delhi and Mumbai tied for 141st place with a score of **** out of 100. They were followed by Chennai (****), Ahmedabad (****), and Bengaluru (****). What are indicators for livability The list was topped by Vienna for yet another year. The index measures cities on five broad indicators such as stability, healthcare, culture and environment, education, and infrastructure. As per the Economic Intelligence Unit’s suggestions, if a city’s livability score is between ** to ** then “livability is substantially constrained”. Less than ** means most aspects of living are severely restricted. Least Liveable cities on the index The least liveable cities were in Sub-Saharan Africa and the Middle East and North Africa regions. Damascus and Tripoli ranked the lowest. Tel Aviv also witnessed significant drop due to war with Hamas.

  2. Ranking of global cities according to GCPI in livability category 2023

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ranking of global cities according to GCPI in livability category 2023 [Dataset]. https://www.statista.com/statistics/1242678/leading-cities-gcpi-livability/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2023, Paris was the most livable city worldwide according to the Global Power City Index (GCPI), with 390 points. Furthermore, Madrid was the second most livable city with 380.9 points, while Tokyo was the third with 367.7 points.

    The criteria taken into consideration include, among others, costs and ease of living, number of retail shops and restaurants, and availability of medical services.

  3. Best cities to live in around the world in 2019

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Best cities to live in around the world in 2019 [Dataset]. https://www.statista.com/statistics/235789/best-cities-by-spatially-adjusted-liveability-index/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    World
    Description

    This statistic shows a list of the best cities to live in around the world as of 2019. The rating is based on five indicators: stability, healthcare, culture and environment, education, and infrastructure. In 2019, the Austrian capital Vienna topped the ranking with 99.1 out of 100 possible points.

  4. Survey of Living Conditions 1995 - Azerbaijan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Studies Center, Institute of Sociology and Political Science (SORGU) and the World Bank (2021). Survey of Living Conditions 1995 - Azerbaijan [Dataset]. https://microdata.unhcr.org/index.php/catalog/391
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    Social Studies Center, Institute of Sociology and Political Science (SORGU) and the World Bank
    Time period covered
    1995
    Area covered
    Azerbaijan
    Description

    Abstract

    Living Standards Measurement Study surveys have been developed by the World Bank to collect the information necessary to measure living standards and evaluate government interventions in the areas of poverty alleviation and social services. The Azerbaijan Survey of Living Conditions (ASLC) applies many of the features of LSMS surveys to provide data for the World Bank Poverty Assessment.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals
    • Community

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Design

    The methodology that was chosen reflects the purpose of the survey. To balance a desire for a large, representative sample with the expense of a detailed survey instrument, a sample size of 2,016 households was selected. Three separate populations were covered: households in Baku, households outside of Baku and households of Displaced Persons. Within each of those populations, the sample was chosen in such a manner that each household had an equal probability of being selected. At the same time, the logistics of locating the households and conducting the interviews within a specific time frame required that the households be grouped into "work loads" of 12 households each. The size of the workload was determined by the number of interviews that could be carried out in one day by one team of three interviewers and a supervisor.

    The Azerbaijan Survey of Living Conditions sample design included 408 households in the eleven raions that make up the city of Baku, 1200 households in the population outside of Baku, and 408 households among the registered Internally Displaced Persons residing throughout the country. This results in an oversampling of the Internally Displaced Persons population and an undersampling of the urban population of Baku. In order to use all data to provide nationally representative estimates, weighting factors must be applied to the data to account for the difference between the population and sample distributions.

    Outside of Baku

    The most recent data on population came from the 1989 census, the most recent data on number of households was reported in 1994 by the National Statistical Committee. The country is divided into towns, villages of the town type, and villages. Every household is located in one of those three types of population points. A list prepared by the National Statistical Committee contains just over 4,250 of these population points. To choose the sample outside of Baku, Baku was excluded from this list as were all the population points located in raions of the country currently occupied (Agdam, Xankendi, Xodjali, Xodjvendi, Susha, Kubatli, Zangelan, Kelbadjar, Lachin, Fizuli and Djebrali). The remainder of the country included 3453 population points. Information on the number of households was not available for all population points, specifically, "villages of the town type" and cities did not have this information. Average household size was calculated for those points that had both population and the number of households and this number was used to impute the number of households for those population points where it was missing. Average household size was 4.25 which is smaller than expected but reflects the fact that numerator is a 1989 statistic and the denominator is from 1994. First stage of sampling: Using the list of actual and estimated number of households for each population point, 100 workloads were spread across the population points in the following manner: 1. the sampling interval, i, was calculated to be the total number of households outside of Baku divided by 100, 2. the random start, s, was calculated by taking the integer portion of [random number * i + 1], 3. the population point containing the sth household, the (s+i)th household, the (s+2i)th household, etc. were then selected. 4. in the event that more than one interval landed on the same population point, multiple workloads of 12 households were surveyed in that population point. In this manner 100 workloads were distributed in 91 population points. Second stage of sampling: In order to select the households within the selected population points, household lists maintained by the administrative office of each Selsoviet were used. Selsoviets are administrative units that cover from one to ten population points. In the population points covered by a single group of 12 households, 16 dwellings were selected--12 to be interviewed and 4 to be used as replacements if necessary. The sampling interval used was the total number of households on the list divided by 16. Each population point had been assigned a randomly generated number with which to calculate a starting point. In population points with more that one group of 12 households, 16 households were selected for each workload and the sampling interval was number of households divided by 16 multiplied by the number of workloads. It is possible that a second household with separate finances could occupy a dwelling that was only listed once in the Selsoviet’s list. If an interviewer discovered more than one family living in a single dwelling, separate questionnaires were to be filled out for both, and a household randomly selected from among the households not yet interviewed on the list for that population point was taken off the list. This replacement of households, opposed to adding households, was adopted because the schedule did not allow time for more than 12 interviews per workload.

    Baku

    In February of 1995, SORGU was commissioned to do a random sampling survey in Baku. At that time a list was compiled of 2000 households in Baku. The 2000 households were distributed across the 11 raions of Baku according to each raion’s proportion of the total population. In each raion, the passport office lists were consulted to select the required number of addresses. In each office, the depth of each drawer full of cards was measured, the total length was divided by the number of households to be selected from that raion and cards were then pulled out at those intervals. From each card a specific address in Baku was noted. There is one passport for each dwelling in that raion regardless of the number of separate household/family units occupied the dwelling. The passport lists are, in principle, continuously updated with information from the housing maintenance offices. However, dwellings that are used for business, unoccupied, abandoned or rented to foreigners may remain listed. Furthermore, it is not clear how new privately built housing units would be listed.The 408 households and 92 replacements for this survey were selected by choosing a random number between 1 and 4, starting with that number and then selecting every fifth address from the existing list.

    Internally Displaced Population

    The National Statistical Committee prepared a listing of population and number of households of internally displaced persons by raion in July 1995. From that list, 34 workloads of 12 households each were selected from 26 raions and 11 Baku Administrative Regions using with a sampling interval and a random start similar to the method used outside of Baku. Ten workloads were selected in Baku and 24 were selected in 17 raions. As before, some raions received more than one workload. In each raion, the administrative offices for the Ministry of Refugees was consulted to locate the internally displaced persons. Each office should have a list of internally displaced persons by households. An additional level of sampling took place to choose three places and four interviews will be conducted in each place. These places were buildings, towns, or tent camps depending on how the households were listed.

    Sampling as Implemented

    In the course of the field work, it was discovered that population lists are not maintained in major urban areas. In Kuba, Xachmas, Devichi, Qaxi, Sheki, Ali Bairamli, Gojai and Agdash, supervisors had to improvise. In some cases passport registration lists were used, as was done in Baku. In other cases electric users lists, gas office books and butter/meat coupon distribution lists were used in order to capture a sample that was as representative as possible. During field work, one population point, Xandar, was not accessible due to security concerns and its proximity to the occupied region. A second population point, Sofukent, was not accessible because of the weather. In both cases, it was not practicable to replace the population points with two other population points randomly selected from the national list. Instead, field teams were instructed to visit the nearest population point of approximately the same size to the chosen population point. The only major disruption to fieldwork occurred in Naxicevan where interviewers were shot at by terrorists, fortunately none was hurt.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    DEVELOPMENT OF QUESTIONNAIRES

    A questionnaire based on the Living Standards Measurement Study surveys was adapted for use in Azerbaijan. Significant reductions in the number of questions reflected the need to conduct the survey in a short period of time and the more limited scope of a poverty assessment as compared to a full-blown government policy analysis. Questionnaire development was done using the Russian language version. The finalized versions were translated into Azeri by SORGU personnel. A special version of the questionnaire with both Russian and English was prepared for use by data analysts.

    DESCRIPTION OF QUESTIONNAIRES

    The survey includes questionnaires at both the household and population point (community) levels. Population point is an administrative designation that can be a village, a "village of the town type" or a

  5. Most miserable countries in the world 2024

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most miserable countries in the world 2024 [Dataset]. https://www.statista.com/statistics/227162/most-miserable-countries-in-the-world/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    In 2024, Sudan was ranked as the most miserable country in the world, with a misery index score of 374.8. Argentina ranked second with an index score of 195.9. Quality of life around the worldThe misery index was created by the economist Arthur Okun in the 1960s. The index is calculated by adding the unemployment rate, the lending rate and the inflation rate minus percent change of GDP per capita. Another famous tool used for the comparison of development of countries around the world is the Human Development Index, which takes into account such factors as life expectancy at birth, literacy rate, education level and gross national income (GNI) per capita. Better economic conditions correlate with higher quality of life Economic conditions affect the life expectancy, which is much higher in the wealthiest regions. With a life expectancy of 85 years, Liechtenstein led the ranking of countries with the highest life expectancy in 2023. On the other hand, Nigeria was the country with the lowest life expectancy, where men were expected to live 55 years as of 2024. The Global Liveability Index ranks the quality of life in cities around the world, basing on political, social, economic and environmental aspects, such as personal safety and health, education and transport services and other public services. In 2024, Vienna was ranked as the city with the highest quality of life worldwide.

  6. Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2020). Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/3399
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2014 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    The Measuring Living Standards in Cities (MLSC) survey is a new instrument designed to enhance understanding of cities in Africa and support evidence based policy design. The instrument was developed under the World Bank’s Spatial Development of African Cities Program, and was piloted in Dar es Salaam (Tanzania) and Durban (South Africa) over the course of 2014/15. These geo-referenced surveys provide information on urban living standards at an unprecedented level of granularity: they can be compared across different geographic levels within the cities, and between areas of ‘regular’ and ‘irregular’ settlement patterns. They also respond to the need to increased understanding of specifically ‘urban’ dimensions of quality of living: housing attributes, access to basic services, and commuting patterns, among others.

    Geographic coverage

    The survey covered households in Dar es Salaam, Tanzania.

    Analysis unit

    • Household

    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE FRAME

    16,000 EAs generated by the Tanzania National Bureau of Statistics (NBS) for the 2012 Census.

    STAGE ONE

    200 EAs sorted into four strata. The central strata was divided into ‘central core, shanty’ and ‘central core, non-shanty’. Two EAs were replaced with reserve EAs as the original EAs were found to be inaccessible.

    STAGE TWO

    12 households randomly selected by systematic equal-probability from updated listing of each EA.

    LISTING METHODOLOGY

    The listing exercise took place between the first and the second stage of sampling. The household listing operations were implemented with computer assisted paperless interviewing (CAPI) techniques, which generates electronic files directly. Enumerators collected basic information about household: the name of the household head name, phone number and total number of household members living in the dwelling. Enumerators also recorded the GPS location of all structures,18 defined the type of structure, and aimed to provide measurement of structure size.

    Listing was preceded by community sensitisation in both cities. In Dar es Salaam, enumerators visited the local chief (Mjumbe) of their assigned EA two days in advance of listing and on the day of listing.

    Enumerators were equipped with maps created on Google My Maps to display shapefiles for the listing exercise. Hardcopies of their respective EA maps were also provided to be use in case of network failure. In Dar es Salaam, enumerators conducted a listing of all households in each of the selected EAs.

    The listing exercise was conducted by 30 enumerators, each of which was assigned between 3 and 9 EAs for listing (enumerators were selected on the basis of performance from a group of 35 that were trained for listing). Enumerators were allocated EAs based on: (i) distance from enumerators’ homes in order to minimize transport time and cost; (ii) distance between the EAs; and (iii) safety and response rate considerations.

    SURVEY IMPLEMENTATION

    The surveys were fielded over the course of several months. The Dar es Salaam survey was implemented between November 2014 and January 2015.

    Cases were assigned to interviewers using Survey Solutions. Interviewers were provided with both an electronic and hardcopy map, as well as a printed completion form, and could contact the listing manager through email, WhatsApp, or google hangouts if they were unable to find the assigned house.

    Completing the survey often required repeat visits. This is because the survey required input from up to three separate respondents: the main respondent, who could be any present household member, and answered questions on household composition, basic information on members, assets, remittances, grants, housing, properties and consumption; the household head, who answered questions on residential history, satisfaction, employment, time use and commuting; and a random respondent, who was randomly selected from household members over the age of 12 (not including the head), who responded questions on satisfaction, employment, time use and commuting. Enumerators visited each house at least twice before a component could be marked as unavailable - in many cases, however, more than two visits were conducted.

    Quality assurance procedures included: (i) In-interview feedback from CAPI, which provided a check that modules or questions were not missing, and alerted interviewers to mistakes and inconsistencies in given answers, so that these could be addressed while the interviewer was still with the respondent; (ii) Aggregate checks conducted using the Survey Solutions Supervisor application, which allows supervisors to identify common mistakes (applied to all initial interviews, and then through spot checks); interviewer performance and completion monitoring conducted by the implementing firm, through interviewer and EA level summaries of response rates, interview completion, and progress; (iii) weekly summaries of key indictors provided by the World Bank team (following each data delivery); (iv) direct observation of fieldwork; and (v) back check interviews. A key lesson learned is that the portion of back check interviews should be agreed in advance with the implementing firm: in Dar es Salaam back checks were conducted on 5% of the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Response rate

    Non-response rate: 13%

  7. w

    State of the Cities Baseline Survey 2012-2013 - Kenya

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ray Struyk (2017). State of the Cities Baseline Survey 2012-2013 - Kenya [Dataset]. https://microdata.worldbank.org/index.php/catalog/2796
    Explore at:
    Dataset updated
    Mar 24, 2017
    Dataset provided by
    Wendy Ayres
    Clifford Zinnes
    Ray Struyk
    Sumila Gulyani
    Time period covered
    2012 - 2013
    Area covered
    Kenya
    Description

    Abstract

    The objective of the survey was to produce baselines for 15 large urban centers in Kenya. The urban centers covered Nairobi, Mombasa, Naivasha, Nakuru, Malindi, Eldoret, Garissa, Embu, Kitui, Kericho, Thika, Kakamega, Kisumu, Machakos, and Nyeri. The survey covered the following issues: (a) household characteristics; (b) household economic profile; (c) housing, tenure, and rents; and (d) infrastructure services. The survey was undertaken to deepen understanding of the cities’ growth dynamics, and to identify specific challenges to quality of life for residents. The survey pays special attention to living conditions for residents of formal versus informal settlements, poor versus non-poor, and male and female headed households.

    Analysis unit

    Household Urban center

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Kenya State of the Cities Baseline Survey is aimed to produce reliable estimates of key indicators related to demographic profile, infrastructure access and economic profile for each of the 15 towns and cities based on representative samples, including representative samples of households (HHs) residing in slum and non-slum areas. For this baseline household survey, NORC used a two- or three-stage stratified cluster sampling design within each of the 15 urban centers. Our first-stage sampling frame was based on the 2009 census frame of enumeration areas. For each of the 15 towns and cities, NORC received the sampling frame of EAs from the Kenya National Bureau of Statistics (KNBS). In the first stage, NORC selected a sample of enumeration areas (PSUs). The second stage involved a random selection of households (SSUs) from each selected EA. In order to manage the field interviewing efficiently, we drew a fixed number of HHs from each selected EA, irrespective of EA size. The third stage arose in instances of very large EAs (EAs containing more than 200 households) in which EAs were divided into 2, 3 or 4 segments, from which one segment was selected randomly for household selection.

    Stratification of Enumeration Areas: A few stratification factors were available for stratifying the EAs to help to achieve the survey objectives. As mentioned earlier, for this baseline survey we wanted to draw representative samples from slum and non-slum areas and also to include poor/non-poor households (HHs). For the 2009 census, depending on the location, KNBS divided the EAs into three categories: rural, urban, and peri-urban.

    Although there is a clear distinction of EAs into slum and non-slum areas, it is hard to classify EAs into poor and non-poor categories. To guarantee enough representation of HHs living in slum and non-slum areas (also referred to as formal and informal areas) as well as HHs living below and above the poverty line, NORC stratified the first-stage sampling units (EAs) into strata, based on EA type (3 types) and settlement type (2 types). Given the resources available, we believe this stratification would serve our purpose as HHs living in slum and in rural areas tend to be poor. Table 1 in Appendix C of final Overview Report (provided under the Related Materials tab) presents the allocation of sampled EAs across the strata for each of the 15 cities in the baseline survey.

    Sampling households is not as straightforward as the first-stage sampling of EAs, since the 2009 census frame of HHs does not exist. In the absence of a household sampling frame, NORC carried out a listing of HHs within each EA selected in the first stage. Trained listers, accompanied by local cluster guides (local residents with some form of authority in the EA), systematically listed all households in each selected EA, gathering the address, names of head of household and spouse, household description, latitude and longitude. To ensure completeness of listing data, avoid duplication and improve ease of locating households that were eventually selected for interview, listers enumerated households by chalking household identification number above the household doorway (an accepted practice for national surveys). The sampling frame of HHs produced from the listing activity was, therefore, up-to-date and included new formal and informal settlements that appeared after the 2009 census.

    For adequate representativeness and to manage the interviewing task efficiently, NORC planned seven completed household interviews per EA. The final recommended sample size for the Kenya State of the Cities baseline survey is found in Table 2 in Appendix C of the final Overview Report.

    Because the expected response rate was unknown prior to the start of the field period, the sampling team randomly selected ten households per enumeration area and distributed them to the interviewers working within the EA. Interviewing teams were instructed to complete at least seven interviews per EA from among the ten selected households. Interviewers were instructed to attempt at least three contacts with each selected household, approaching potential respondents on different days of the week and different times of day. Table 2 presents the final number of EAs listed per city and the final number of completed interviews per city. The table also presents the percent of planned EAs and interviews that were completed vs. planned. Please note that in several cities more interviews were completed than planned. As part of NORC's data quality plan, data collection teams were instructed to overshoot slightly the target of seven interviews per EA, if feasible, to mitigate any potential loss of cases due to poor quality or uncooperative respondents. Few cases were lost due to poor quality, therefore the target number of interviews remains over 100 percent in ten of the fifteen cities.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was developed by World Bank staff with input from stakeholders in the Kenya Municipal Program and NORC researchers and survey methodologists. The base questionnaire for the project was a 2004 World Bank survey of Nairobi slums. However, an extended iterative review process led to many changes in the questionnaire. The final version that was used for programming provided under the Related Materials tab, and in Volume II of the Overview.

    The questionnaire’s topical coverage is indicated by the titles of its nine modules: 1. Demographics and household composition 2. Security of housing, land and tenure 3. Housing and settlement profile 4. Economic profile 5. Infrastructure services 6. Health 7. Household enterprises7 8. Civil participation and respondent tracking

    Response rate

    The completion rate is reported as the number of households that successfully completed an interview over the total number of households selected for the EA. These are shown by city in Table 5 in Appendix C of the final Overview Report, and have an average rate of 68.66 percent, with variation from 66 to 74 percent (aside from Nairobi at 61.47 percent and Machakos at 56 percent). As described earlier, ten households were selected per EA if the EA contained more than 10 households. For EAs where fewer than ten households were selected for interviews, all households were selected. In some EAs, more than ten households were selected due to a central office error.

  8. The global Smart Wiring Devices market size is USD 8345.5 million in 2024.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global Smart Wiring Devices market size is USD 8345.5 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/smart-wiring-devices-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Smart Wiring Devices market size will be USD 8345.5 million in 2024. It will expand at a compound annual growth rate (CAGR) of 12.40% from 2024 to 2031.

    North America held the major market share for more than 40% of the global revenue with a market size of USD 3338.2 million in 2024 and will grow at a compound annual growth rate (CAGR) of 10.6% from 2024 to 2031.
    Europe accounted for a market share of over 30% of the global revenue with a market size of USD 2503.6 million.
    Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 1919.4 million in 2024 and will grow at a compound annual growth rate (CAGR) of 14.4% from 2024 to 2031.
    Latin America had a market share of more than 5% of the global revenue with a market size of USD 417.2 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.8% from 2024 to 2031.
    Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 166.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.1% from 2024 to 2031.
    The Smart Switches Product Type held the highest Smart Wiring Devices market revenue share in 2024.
    

    Market Dynamics of Smart Wiring Devices Market

    Key Drivers for Smart Wiring Devices Market

    Growing Urbanization and Infrastructure Development to Increase the Demand Globally
    

    Rapid urbanization and infrastructure development in emerging markets create significant opportunities for smart wiring devices in new residential, commercial, and mixed-use projects. Globally, an increasing proportion of the population resides in cities. In 2012, 52.5% of people lived in urban areas, and this figure was projected to rise to 56.9% by 2022. Urbanization is generally more pronounced in developed regions (79.7% in 2022) compared to developing countries (52.3%). In least-developed countries (LDCs), the urban population remains a minority at 35.8%. The development of smart cities and the integration of smart infrastructure systems offer significant opportunities for smart wiring devices to enhance urban living conditions. Notably, Abu Dhabi and Dubai have made substantial progress in smart city rankings, with Abu Dhabi positioned 28th and Dubai closely following at 29th out of 118 cities in the 'Smart City Index 2021'. Both emirates improved their rankings by 14 places compared to 2020. https://hbs.unctad.org/total-and-urban-population/ https://www.moec.gov.ae/en/-/smart-cities-and-autonomous-transportation-1

    Energy Efficiency and Sustainability to Propel Market Growth
    

    The increasing focus on sustainable and green building practices creates significant opportunities for smart wiring devices that aid in energy savings and environmental sustainability. Following Massachusetts—where 96 buildings totaling over 26 million square feet received LEED certification in 2022, representing nearly 3.7 LEED-certified square feet per resident—other leading states include Illinois (3.47 square feet per capita), New York (3.17 square feet per capita), California (2.43 square feet per capita), and Maryland (2.39 square feet per capita). In 2022, the U.S. Green Building Council (USGBC) surpassed 100,000 LEED-certified projects globally, totaling over 11 billion certified gross square feet. Smart wiring devices can play a crucial role in monitoring and optimizing energy use, thereby supporting global efforts to lower carbon footprints. Additionally, various governments and organizations provide incentives and rebates for the adoption of energy-efficient technologies, including smart wiring devices, which can further drive market growth.

    https://www.usgbc.org/articles/us-green-building-council-announces-2022-top-10-states-green-building

    Restraint Factor for the Smart Wiring Devices Market

    High Cost of installation to Limit the Sales
    

    Standard cables present a notable challenge during the installation of smart wiring devices. Blue C-wires, which provide continuous power to a smart thermostat to keep its software running, are often missing in older homes. This absence requires the use of an adapter, potentially necessitating the running of a cable from the thermostat to the nearest power outlet, which can be problematic. Consequently, the high cost and complexity of installation for smart wiring devices, such as smart th...

  9. f

    Review of National survey and data sources reviewed for inclusion of Urban...

    • plos.figshare.com
    xls
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sampurna Kakchapati; Sitashma Mainali; Noemia Teixeira de Siqueira-Filha; Helen Elsey; Joseph Paul Hicks; Andrew Clark; Farzana Sehrin; Zahidul Quayyum; Bassey Ebenso; Sushil Chandra Baral (2025). Review of National survey and data sources reviewed for inclusion of Urban Deprivation Index. [Dataset]. http://doi.org/10.1371/journal.pone.0324837.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Sampurna Kakchapati; Sitashma Mainali; Noemia Teixeira de Siqueira-Filha; Helen Elsey; Joseph Paul Hicks; Andrew Clark; Farzana Sehrin; Zahidul Quayyum; Bassey Ebenso; Sushil Chandra Baral
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Review of National survey and data sources reviewed for inclusion of Urban Deprivation Index.

  10. Cost of living index score of megacities APAC 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index score of megacities APAC 2024 [Dataset]. https://www.statista.com/statistics/915112/asia-pacific-cost-of-living-index-in-megacities/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Asia, Asia–Pacific
    Description

    South Korea's capital Seoul had the highest cost of living among megacities in the Asia-Pacific region in 2024, with an index score of ****. Japan's capital Tokyo followed with a cost of living index score of ****. AffordabilityIn terms of housing affordability, Chinese megacity Shanghai had the highest rent index score in 2024. Affordability has become an issue in certain megacities across the Asia-Pacific region, with accommodation proving expensive. Next to Shanghai, Japanese capital Tokyo and South Korean capital Seoul boast some of the highest rent indices in the region. Increased opportunities in megacitiesAs the biggest region in the world, it is not surprising that the Asia-Pacific region is home to 28 megacities as of January 2024, with expectations that this number will dramatically increase by 2030. The growing number of megacities in the Asia-Pacific region can be attributed to raised levels of employment and living conditions. Cities such as Tokyo, Shanghai, and Beijing have become economic and industrial hubs. Subsequently, these cities have forged a reputation as being the in-trend places to live among the younger generations. This reputation has also pushed them to become enticing to tourists, with Tokyo displaying increased numbers of tourists throughout recent years, which in turn has created more job opportunities for inhabitants. As well as Tokyo, Shanghai has benefitted from the increased tourism, and has demonstrated an increasing population. A big factor in this population increase could be due to the migration of citizens to the city, seeking better employment possibilities.

  11. Degree of urbanization 2025, by continent

    • statista.com
    • ai-chatbox.pro
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Degree of urbanization 2025, by continent [Dataset]. https://www.statista.com/statistics/270860/urbanization-by-continent/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, the degree of urbanization worldwide was at 58 percent. North America, Latin America, and the Caribbean were the regions with the highest level of urbanization, with over four-fifths of the population residing in urban areas. The degree of urbanization defines the share of the population living in areas defined as "cities". On the other hand, less than half of Africa's population lives in urban settlements. Globally, China accounts for over one-quarter of the built-up areas of more than 500,000 inhabitants. The definition of a city differs across various world regions - some countries count settlements with 100 houses or more as urban, while others only include the capital of a country or provincial capitals in their count. Largest agglomerations worldwideThough North America is the most urbanized continent, no U.S. city was among the top ten urban agglomerations worldwide in 2023. Tokyo-Yokohama in Japan was the largest urban area in the world that year, with 37.7 million inhabitants. New York ranked 13th, with 21.4 million inhabitants. Eight of the 10 most populous cities are located in Asia. ConnectivityIt may be hard to imagine how the reality will look in 2050, with 70 percent of the global population living in cities, but some statistics illustrate the ways urban living differs from suburban and rural living. American urbanites may lead more “connected” (i.e., internet-connected) lives than their rural and/or suburban counterparts. As of 2021, around 89 percent of people living in urban areas owned a smartphone. Internet usage was also higher in cities than in rural areas. On the other hand, rural areas always have, and always will, attract those who want to escape the rush of the city.

  12. Cost of living index in India 2024, by city

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in India 2024, by city [Dataset]. https://www.statista.com/statistics/1399330/india-cost-of-living-index-by-city/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    As of September 2024, Mumbai had the highest cost of living among other cities in the country, with an index value of ****. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of ****.  What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.

  13. g

    Housing Research Notes

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing Research Notes [Dataset]. https://gimi9.com/dataset/london_housing-research-notes/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Housing Research Notes are a series of analytical reports from the Greater London Authority focusing on individual issues of relevance to housing policy in London. The most recent Housing Research Note (published in November 2023) estimates the annual cost to the NHS of homes in poor condition in London. It also estimates the cost of repairing all the homes in London that are in poor condition, calculating how long it would take the savings to pay off the repair costs. The analysis is broken down by tenure and compared with the same figures for the rest of England. Previous Housing Research Notes have analysed topics including housing supply, Help to Buy policy, short-term lettings, international comparisons, the factors behind increasing private rents and race equality. The Housing Research Notes are listed below in reverse date order: HRN 11 (2023) The cost of poor housing in London (November 2023) HRN 10 (2023) The affordability impacts of new housing supply: A summary of recent research (August 2023) HRN 09 (2023) Understanding recent rental trends in London’s private rental market (June 2023) HRN 08 (2022) Housing and race equality in London (March 2022) HRN 07 (2021) Who moves into social housing in London? (November 2021) HRN 06 (2021) An analysis of housing floorspace per person (February 2021) HRN 05 (2020) Intermediate housing: The evidence base (August 2020) HRN 04 (2020) Short-term and holiday letting in London (February 2020) HRN 03 (2019) Housing in four world cities: London, New York, Paris and Tokyo (April 2019) HRN 02 (2018) Help to Buy in London (September 2018) HRN 01 (2018) The profile of London's new homes in 2016/17: Analysis of the London Development Database (May 2018)

  14. w

    Fifth Integrated Household Survey 2019-2020 - Malawi

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office (NSO) (2024). Fifth Integrated Household Survey 2019-2020 - Malawi [Dataset]. https://microdata.worldbank.org/index.php/catalog/3818
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    National Statistical Office (NSO)
    Time period covered
    2019 - 2020
    Area covered
    Malawi
    Description

    Abstract

    The Integrated Household Survey is one of the primary instruments implemented by the Government of Malawi through the National Statistical Office (NSO) roughly every 3-5 years to monitor and evaluate the changing conditions of Malawian households. The IHS data have, among other insights, provided benchmark poverty and vulnerability indicators to foster evidence-based policy formulation and monitor the progress of meeting the Millennium Development Goals (MDGs), the goals listed as part of the Malawi Growth and Development Strategy (MGDS) and now the Sustainable Development Goals (SDGs).

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals
    • Consumption expenditure commodities/items
    • Communities
    • Agricultural household/ Holder/ Crop
    • Market

    Universe

    Members of the following households are not eligible for inclusion in the survey: • All people who live outside the selected EAs, whether in urban or rural areas. • All residents of dwellings other than private dwellings, such as prisons, hospitals and army barracks. • Members of the Malawian armed forces who reside within a military base. (If such individuals reside in private dwellings off the base, however, they should be included among the households eligible for random selection for the survey.) • Non-Malawian diplomats, diplomatic staff, and members of their households. (However, note that non-Malawian residents who are not diplomats or diplomatic staff and are resident in private dwellings are eligible for inclusion in the survey. The survey is not restricted to Malawian citizens alone.) • Non-Malawian tourists and others on vacation in Malawi.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The IHS5 sampling frame is based on the listing information and cartography from the 2018 Malawi Population and Housing Census (PHC); includes the three major regions of Malawi, namely North, Center and South; and is stratified into rural and urban strata. The urban strata include the four major urban areas: Lilongwe City, Blantyre City, Mzuzu City, and the Municipality of Zomba. All other areas are considered as rural areas, and each of the 27 districts were considered as a separate sub-stratum as part of the main rural stratum. The sampling frame further excludes the population living in institutions, such as hospitals, prisons and military barracks. Hence, the IHS5 strata are composed of 32 districts in Malawi.

    A stratified two-stage sample design was used for the IHS5.

    Note: Detailed sample design information is presented in the "Fifth Integrated Household Survey 2019-2020, Basic Information Document" document.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    HOUSEHOLD QUESTIONNAIRE The Household Questionnaire is a multi-topic survey instrument and is near-identical to the content and organization of the IHS3 and IHS4 questionnaires. It encompasses economic activities, demographics, welfare and other sectoral information of households. It covers a wide range of topics, dealing with the dynamics of poverty (consumption, cash and non-cash income, savings, assets, food security, health and education, vulnerability and social protection). Although the IHS5 household questionnaire covers a wide variety of topics in detail it intentionally excludes in-depth information on topics covered in other surveys that are part of the NSO’s statistical plan (such as maternal and child health issues covered at length in the Malawi Demographic and Health Survey).

    AGRICULTURE QUESTIONNAIRE All IHS5 households that are identified as being involved in agricultural or livestock activities were administered the agriculture questionnaire, which is primarily modelled after the IHS3 counterpart. The modules are expanding on the agricultural content of the IHS4, IHS3, IHS2, AISS, and other regional agricultural surveys, while remaining consistent with the NACAL topical coverage and methodology. The development of the agriculture questionnaire was done with input from the aforementioned stakeholders who provided input on the household questionnaire as well as outside researchers involved in research and policy discussions pertaining to the Malawian agriculture. The agriculture questionnaire allows, among other things, for extensive agricultural productivity analysis through the diligent estimation of land areas, both owned and cultivated, labor and non-labor input use and expenditures, and production figures for main crops, and livestock. Although one of the major foci of the agriculture data collection effort was to produce smallholder production estimates for major crops, it is also possible to disaggregate the data by gender and main geographical regions. The IHS5 cross-sectional households supply information on the last completed rainy season (2017/2018 or 2018/2019) and the last completed dry season (2018 or 2019) depending on the timing of their interview.

    FISHERIES QUESTIONNAIRE The design of the IHS5 fishery questionnaire is identical to the questionnaire designed for IHS3. The IHS3 fisheries questionnaire was informed by the design and piloting of a fishery questionnaire by the World Fish Center (WFC), which was supported by the LSMS-ISA project for the purpose of assembling a fishery questionnaire that could be integrated into multi-topic household-surveys. The WFC piloted the draft instrument in November 2009 in the Lower Shire region, and the NSO team considered the revised draft in designing the IHS5 fishery questionnaire.

    COMMUNITY QUESTIONNAIRE The content of the IHS5 Community Questionnaire follows the content of the IHS3 & IHS4 Community Questionnaires. A “community” is defined as the village or urban location surrounding the enumeration area selected for inclusion in the sample and which most residents recognize as being their community. The IHS5 community questionnaire was administered to each community associated with the cross-sectional EAs interviewed. Identical to the IHS3 and IHS4 approach, to a group of several knowledgeable residents such as the village headman, the headmaster of the local school, the agricultural field assistant, religious leaders, local merchants, health workers and long-term knowledgeable residents. The instrument gathers information on a range of community characteristics, including religious and ethnic background, physical infrastructure, access to public services, economic activities, communal resource management, organization and governance, investment projects, and local retail price information for essential goods and services.

    MARKET QUESTIONNAIRE The Market Survey consisted of one questionnaire which is composed of four modules. Module A: Market Identification, Module B: Seasonal Main Crops, Module C: Permanents Crops, and Module D: Food Consumption.

    Cleaning operations

    DATA ENTRY PLATFORM To ensure data quality and timely availability of data, the IHS5 was implemented using the World Bank’s Survey Solutions CAPI software. To carry out IHS5, 1 laptop computer and a wireless internet router were assigned to each team supervisor, and each enumerator had an 8–inch GPS-enabled Lenovo tablet computer. The use of Survey Solutions allowed for the real-time availability of data as the completed data was completed, approved by the Supervisor and synced to the Headquarters server as frequently as possible. While administering the first module of the questionnaire the enumerator(s) also used their tablets to record the GPS coordinates of the dwelling units. In Survey Solutions, Headquarters can then see the location of the dwellings plotted on a map of Malawi to better enable supervision from afar – checking both the number of interviews performed and the fact that the sample households lie within EA boundaries. Geo-referenced household locations from that tablet complemented the GPS measurements taken by the Garmin eTrex 30 handheld devices and these were linked with publically available geospatial databases to enable the inclusion of a number of geospatial variables - extensive measures of distance (i.e. distance to the nearest market), climatology, soil and terrain, and other environmental factors - in the analysis.

    The range and consistency checks built into the application was informed by the LSMS-ISA experience in previous IHS waves. Prior programming of the data entry application allowed for a wide variety of range and consistency checks to be conducted and reported and potential issues investigated and corrected before closing the assigned enumeration area. Headquarters (NSO management) assigned work to supervisors based on their regions of coverage. Supervisors then made assignments to the enumerators linked to their Supervisor account. The work assignments and syncing of completed interviews took place through a Wi-Fi connection to the IHS5 server. Because the data was available in real time it was monitored closely throughout the entire data collection period and upon receipt of the data at headquarters, data was exported to STATA for other consistency checks, data cleaning, and analysis.

    DATA MANAGEMENT The IHS5 Survey Solutions CAPI based data entry application was designed to stream-line the data collection process from the field. IHS5 Interviews were collected in “sample” mode (assignments generated from headquarters) as opposed to “census” mode (new interviews created by interviewers from a template) for the NSO to have more control over the sample.

    The range and consistency checks built into the application was informed by the LSMS-ISA experience in previous IHS waves. Prior programming of the data

  15. s

    Airbnb Commission Revenue By Region

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Airbnb Commission Revenue By Region [Dataset]. https://www.searchlogistics.com/learn/statistics/airbnb-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the complete breakdown of how much revenue Airbnb makes in commission from listings in each region.

  16. Countries with the largest number of overseas Chinese 2023

    • statista.com
    Updated Oct 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the largest number of overseas Chinese 2023 [Dataset]. https://www.statista.com/statistics/279530/countries-with-the-largest-number-of-overseas-chinese/
    Explore at:
    Dataset updated
    Oct 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    China
    Description

    Among countries with the highest number of overseas Chinese on each continent, the largest Chinese diaspora community is living in Indonesia, numbering more than ten million people. Most of these people are descendants from migrants born in China, who have moved to Indonesia a long time ago. On the contrary, a large part of overseas Chinese living in Canada and Australia have arrived in these countries only during the last two decades. China as an emigration country Many Chinese people have emigrated from their home country in search of better living conditions and educational chances. The increasing number of Chinese emigrants has benefited from loosened migration policies. On the one hand, the attitude of the Chinese government towards emigration has changed significantly. Overseas Chinese are considered to be strong supporters for the overall strength of Chinese culture and international influence. On the other hand, migration policies in the United States and Canada are changing with time, expanding migration opportunities for non-European immigrants. As a result, China has become one of the world’s largest emigration countries as well as the country with the highest outflows of high net worth individuals. However, the mass emigration is causing a severe loss of homegrown talents and assets. The problem of talent and wealth outflow has raised pressing questions to the Chinese government, and a solution to this issue is yet to be determined. Popular destinations among Chinese emigrants Over the last decades, English speaking developed countries have been popular destinations for Chinese emigrants. In 2022 alone, the number of people from China naturalized as U.S. citizens had amounted to over 27,000 people, while nearly 68,000 had obtained legal permanent resident status as “green card” recipients. Among other popular immigration destinations for Chinese riches are Canada, Australia, Europe, and Singapore.

  17. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  18. GDP share of cities in India 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). GDP share of cities in India 2024 [Dataset]. https://www.statista.com/statistics/1400141/india-gdp-of-major-cities/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    India
    Description

    As of 2024, Mumbai had a gross domestic product of *** billion U.S. dollars, the highest among other major cities in India. It was followed by Delhi with a GDP of around *** billion U.S. dollars. India’s megacities also boast the highest GDP among other cities in the country. What drives the GDP of India’s megacities? Mumbai is the financial capital of the country, and its GDP growth is primarily fueled by the financial services sector, port-based trade, and the Hindi film industry or Bollywood. Delhi in addition to being the political hub hosts a significant services sector. The satellite cities of Noida and Gurugram amplify the city's economic status. The southern cities of Bengaluru and Chennai have emerged as IT and manufacturing hubs respectively. Hyderabad is a significant player in the pharma and IT industries. Lastly, the western city of Ahmedabad, in addition to its strategic location and ports, is powered by the textile, chemicals, and machinery sectors. Does GDP equal to quality of life? Cities propelling economic growth and generating a major share of GDP is a global phenomenon, as in the case of Tokyo, Shanghai, New York, and others. However, the GDP, which measures the market value of all final goods and services produced in a region, does not always translate to a rise in quality of life. Five of India’s megacities featured in the Global Livability Index, with low ranks among global peers. The Index was based on indicators such as healthcare, political stability, environment and culture, infrastructure, and others.

  19. Share of the world's population living in urban or rural areas 1960-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of the world's population living in urban or rural areas 1960-2023 [Dataset]. https://www.statista.com/statistics/1262483/global-urban-rural-population/
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    2007 marked the first year where more of the world's population lived in an urban setting than a rural setting. In 1960, roughly a third of the world lived in an urban setting; it is expected that this figure will reach two thirds by 2050. Urbanization is a fairly new phenomenon; for the vast majority of human history, fewer than five percent of the world lived in urban areas, due to the dependency on subsistence agriculture. Advancements in agricultural practices and technology then coincided with the beginning of the industrial revolution in Europe in the late 19th century, which resulted in waves of urbanization to meet the demands of emerging manufacturing industries. This trend was replicated across the rest of the world as it industrialized over the following two centuries, and the most significant increase coincided with the industrialization of the most populous countries in Asia. In more developed economies, urbanization remains high even as economies de-industrialize, due to a variety of factors such as housing availability, labor demands in service industries, and social trends.

  20. Population in Africa 2025, by selected country

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Africa 2025, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Most livable Indian cities on Global Liveability Index 2024, by score [Dataset]. https://www.statista.com/statistics/1398617/india-most-livable-indian-cities-ranking/
Organization logo

Most livable Indian cities on Global Liveability Index 2024, by score

Explore at:
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
India
Description

As per the Global Liveability Index of 2024, five Indian cities figured on the list comprising 173 across the world. Indian megacities Delhi and Mumbai tied for 141st place with a score of **** out of 100. They were followed by Chennai (****), Ahmedabad (****), and Bengaluru (****). What are indicators for livability The list was topped by Vienna for yet another year. The index measures cities on five broad indicators such as stability, healthcare, culture and environment, education, and infrastructure. As per the Economic Intelligence Unit’s suggestions, if a city’s livability score is between ** to ** then “livability is substantially constrained”. Less than ** means most aspects of living are severely restricted. Least Liveable cities on the index The least liveable cities were in Sub-Saharan Africa and the Middle East and North Africa regions. Damascus and Tripoli ranked the lowest. Tel Aviv also witnessed significant drop due to war with Hamas.

Search
Clear search
Close search
Google apps
Main menu