This statistic shows the distribution of income worldwide in 2035 by region. By 2035, roughly *** million people in India are projected to earn between zero and ***** U.S. dollars annually.
The massive wealth inequality in the world is underpinned by this chart: while *** percent of the world's population had fortunes of more than one million U.S. dollars in 2025, over ** percent of the global population had a total wealth of less than 10,000 U.S. dollars.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1246) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.
Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.
Small changes in estimates between years should be treated with caution as they may not be statistically significant.
Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm
Between December 2019 and 2021, the top one percent of earners accumulated 63 percent of all new wealth worldwide. This is more than six times more wealth than accumulated by the bottom 90 percent over the same time period.
Global wealth distribution Newly generated wealth landing in the hands of the few is not a new story and has been the focus of international development policy for many years. Looking at a regional level, Latin America was the region with the starkest distribution of wealth. In this region, 77 percent of the wealth was held by the richest 10 percent in 2021, and only 0.5 percent held by the poorest 50 percent. At an individual level, around 2.82 billion adults worldwide had a net worth of less than 10,000 U.S. dollars in 2021.
Billionaires In 2021, the highest concentration of billionaires could be found in North America. However, China had the largest number of billionaires in its population in 2022, with most living in Beijing. Looking at wealth distribution amongst billionaires themselves, 20 people had fortunes of 50 billion U.S. dollars or more, but the majority of billionaires had a personal fortune between two and five billion U.S. dollars.
In December 2022, Elon Musk slipped from the top spot of richest people on Earth. The number one spot was taken by French magnate, Bernard Arnault of Moët Hennessy Louis Vuitton.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Minimum Wealth Cutoff for the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1311) from Q3 1989 to Q3 2022 about wealth, percentile, and USA.
This data package includes the underlying data and files to replicate the calculations, charts, and tables presented in The Future of Worldwide Income Distribution, PIIE Working Paper 15-7. If you use the data, please cite as: Hellebrandt, Tomas, and Paolo Mauro. (2015). The Future of Worldwide Income Distribution. PIIE Working Paper 15-7. Peterson Institute for International Economics.
The World Income Inequality database is part of the United Nations University World Institute for Development Economics Research (UNU-WIDER) and contains information on income inequality for 189 developed, developing and transition countries.
In 2023, the Middle East and North Africa, and Latin America were the regions with the lowest level of distribution of wealth worldwide, with the richest ten percent holding around ** percent of the total wealth. On the other hand, in Europe, the richest ten percent held around ** percent of the wealth. East and South Asia were the regions where the poorest half of the population held the highest share of the wealth, but still only around **** percent, underlining the high levels of wealth inequalities worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
In 2023, roughly 1.49 billion adults worldwide had a net worth of less than 10,000 U.S. dollars. By comparison, 58 million adults had a net worth of more than one million U.S. dollars in the same year. Wealth distribution The distribution of wealth is an indicator of economic inequality. The United Nations says that wealth includes the sum of natural, human, and physical assets. Wealth is not synonymous with income, however, because having a large income can be depleted if one has significant expenses. In 2023, nearly 1,700 billionaires had a total wealth between one to two billion U.S. dollars. Wealth worldwide China had the highest number of billionaires in 2023, with the United States following behind. That same year, New York had the most billionaires worldwide.
Is global inequality (inequality among world citizens) stable, decreasing or increasing? How high it is? Is it mostly due to inequalities within nations or between nations? Is there a global middle class? See the working papers above: "True world income distribution 1988 and 1993: first calculations based on household surveys alone" no. 2244, and "Decomposing global income distribution: Does the world have a middle class?" no. 2562
Household survey data (1988-2002) used in these papers, and subsequent book "Worlds Apart: Measuring International and Global Inequality", Princeton University Press, 2005. The data are for three benchmark years: 1988, 1993 and 1998
Aggregate data [agg]
Other [oth]
Dataset consisting of inequality measures for 46 nation states and a global bibliography of all known household expenditure surveys covering the period roughly 1880-1960. Each entry notes when and where the survey was carried out and salient characteristics of the survey such as number of households, whether income and/or expenditure data are collected etc. These bibliographies are organised by six world regions and then by 118 nation states. For a sub-set of the most useful surveys we have estimated various inequality measures from the published data for 46 nation states, organised by world region.This project will calculate new estimates of world inequality in the period from the end of the nineteenth century until the 1960s, based on the results of household expenditure surveys. Our investigations have located a vast cache of household expenditure surveys for the period. Thus far, we have identified around 800 household surveys from around the world, carried out between the 1880s and 1960s, of which around half are of sufficient scope as to be potentially useful for the investigation of inequality. We will extract the reported demographic and expenditure data by income group from these reports and use them to estimate parameters of the income distribution. Using these estimates, we will investigate the changing nature of inequality within a number of key nation states, and also investigate the time path and geography of global inequality 1880-1960. In addition, we would use these data to estimate other indicators of living conditions, such as nutritional attainment, which may provide further insights into the impact of industrialisation on inequality. This project utilised the published reports of household expenditure surveys. These published reports are held at copyright libraries or national statistical offices and were typically part of the output of government departments (for example, the UK Board of Trade). We compiled our bibliographies through library searches and requests to various national statistical offices. Many of these reports are published in English, but a substantial number are only published in the language of the relevant nation state. The published household expenditure survey reports typically include summary tables of grouped data of income, expenditures, and household structure. All of these reports, and the data therein, are already in the public domain, and our bibliography provides details of when and where they were published. From these data we estimated a suite of inequality measures, using three different techniques. The inequality measures are: Gini coefficient, 90/10 percentile ratio, 90/50 percentile ratio, and the 50/10 percentile ratio. These inequality measures were estimated three ways: linear interpolation, the Beta-Lorenz method and a log normal density estimation. Not all published household expenditure survey reports contain sufficient data to estimate inequality measures. Our selection was based simply on whether the reports published the appropriate data. All that we required to estimate inequality were total household income or expenditure grouped by class (and the group average incomes/expenditures) and the total number of households and average household size.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles) (WFRBLB50107) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
This data package includes the underlying data and files to replicate the calculations, charts, and tables presented in World on the Move: The Changing Global Income Distribution and Its Implications for Consumption Patterns and Public Policies, PIIE Policy Brief 15-21. If you use the data, please cite as: Hellebrandt, Tomas, and Paolo Mauro. (2015). World on the Move: The Changing Global Income Distribution and Its Implications for Consumption Patterns and Public Policies. PIIE Policy Brief 15-21. Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China % of Household grouped by Annual Income: Urban:RMB80000-85000 data was reported at 3.330 % in 2011. This records an increase from the previous number of 3.010 % for 2010. China % of Household grouped by Annual Income: Urban:RMB80000-85000 data is updated yearly, averaging 2.030 % from Dec 2005 (Median) to 2011, with 7 observations. The data reached an all-time high of 3.330 % in 2011 and a record low of 0.780 % in 2005. China % of Household grouped by Annual Income: Urban:RMB80000-85000 data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Household Survey – Table CN.HD: Household Income Distribution: Urban.
This feature shows the global wealth distribution for the years 1995, 2000, and 2005. Feature published and hosted by Esri Canada © 2013. Content Sources: Countries, Esri Maps and DataThe World Bank, The Changing Wealth of Nations: http://data.worldbank.org/data-catalog/wealth-of-nations Coordinate System: Web Mercator Auxiliary Sphere (WKID 102100) Update Frequency: As Required Publication Date: October 2013 OECD stands for Organisation for Economic Co-operation and Development and is a global organization created to "promote policies that will improve the economic and social well-being of people around the world".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in International Falls. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of International Falls population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 91.29% of the total residents in International Falls. Notably, the median household income for White households is $61,963. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $61,963.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for International Falls median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ukraine Population Distribution: with Avg Income per Capita: 3360.1 to 3720.0 UAH data was reported at 10.800 % in 2017. This records an increase from the previous number of 7.900 % for 2016. Ukraine Population Distribution: with Avg Income per Capita: 3360.1 to 3720.0 UAH data is updated yearly, averaging 3.450 % from Dec 2012 (Median) to 2017, with 6 observations. The data reached an all-time high of 10.800 % in 2017 and a record low of 2.000 % in 2013. Ukraine Population Distribution: with Avg Income per Capita: 3360.1 to 3720.0 UAH data remains active status in CEIC and is reported by State Statistics Service of Ukraine. The data is categorized under Global Database’s Ukraine – Table UA.H009: Household Income and Expenditure: Annual.
As of 2024, 99 percent of young people aged 15-24 living in high-income countries used the internet. Meanwhile, the percentage of internet users among the rest of the population of the countries in the same category was 93 percent. Upper-middle-income economies ranked second by the share of young people using the internet, 97 percent. In markets with low income, the percentage of 15-24 year-olds using the internet was the lowest, 43 percent.
This statistic shows the distribution of income worldwide in 2035 by region. By 2035, roughly *** million people in India are projected to earn between zero and ***** U.S. dollars annually.