The significant increase in life expectancy over the past 75 years has largely been driven by reductions in infant and child mortality, and has seen life expectancy from birth increase by 27 years between 1950 and 2024. However, this is not the only driver of increased life expectancy, as humanity has also become much better at prolonging life for adults. In 1950, 65-year-olds could expect to live for another 11 years on average, while this has risen to almost 18 years in 2025. The notable dips in life expectancy are due to China's Great Leap Forward around 1960, famine and conflict in Asia (especially Bangladesh) around 1970, and the COVID-19 pandemic in the early 2020s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data was reported at 4.700 Ratio in 2023. This stayed constant from the previous number of 4.700 Ratio for 2022. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data is updated yearly, averaging 7.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 28.600 Ratio in 1960 and a record low of 4.700 Ratio in 2023. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Social: Health Statistics. Under-five mortality rate, female is the probability per 1,000 that a newborn female baby will die before reaching age five, if subject to female age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is a sex-disaggregated indicator for Sustainable Development Goal 3.2.1 [https://unstats.un.org/sdgs/metadata/].
Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
This dataset includes estimates for age-standardized adult mortality rate and 95% uncertainty interval estimates by location, male, female and both sexes combined in 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2016. This age-specific mortality dataset is used to enable health systems to target interventions for the adult populations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chad TD: Mortality Rate: Adult: Female: per 1000 Female Adults data was reported at 309.354 Ratio in 2023. This records a decrease from the previous number of 315.145 Ratio for 2022. Chad TD: Mortality Rate: Adult: Female: per 1000 Female Adults data is updated yearly, averaging 360.496 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 406.629 Ratio in 1960 and a record low of 309.354 Ratio in 2023. Chad TD: Mortality Rate: Adult: Female: per 1000 Female Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Social: Health Statistics. Adult mortality rate, female, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old female dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.;(1) United Nations Population Division. World Population Prospects: 2024 Revision. (2) HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org.;Weighted average;
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chad TD: Mortality Rate: Infant: per 1000 Live Births data was reported at 58.700 Ratio in 2023. This records a decrease from the previous number of 60.300 Ratio for 2022. Chad TD: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 114.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 142.000 Ratio in 1960 and a record low of 58.700 Ratio in 2023. Chad TD: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Social: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 195 countries was 8.37 deaths per 1000 people. The highest value was in Ukraine: 21.4 deaths per 1000 people and the lowest value was in Qatar: 1.08 deaths per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Background Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. Methods We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0.5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Sociodemographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. Findings Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86.9 years (95% UI 86.7-87.2), and for men in Singapore, at 81.3 years (78.8-83.7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap be...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Denmark DK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 11.300 % in 2016. This records a decrease from the previous number of 11.700 % for 2015. Denmark DK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 13.400 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.300 % in 2000 and a record low of 11.300 % in 2016. Denmark DK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Denmark – Table DK.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Over the past three decades, the global death rates of both genders decreased. However, there was an increase during the COVID-19 pandemic among both women and men. In 2022, there were *** deaths per 1,000 men between 15 and 60 years, and *** per 1,000 women of the same age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionCongenital heart disease (CHD) represents a significant global public health burden, with substantial variability in mortality rates across different regions and age groups.MethodsThis study utilized the Global Burden of Disease (GBD) database to examine trends in CHD-related mortality among children aged 0-14 from 1990 to 2021.ResultsWe report a 55.34% reduction in CHD-related deaths among children, with global mortality rates decreasing from 28.63 per 100,000 in 1990 to 11.06 per 100,000 in 2021. Notably, the decline in mortality was more pronounced in younger children, with the highest burden observed in the Low socio-demographic index (SDI) region, where CHD-related mortality rates remain disproportionately high. In contrast, the high SDI region experienced the greatest improvements in mortality reduction. Regional disparities are also evident, with South Asia bearing the highest number of CHD-related deaths, while Oceania exhibited the highest mortality rate.DiscussionThese trends underscore the need for continued global efforts to reduce CHD-related mortality, particularly in low-income regions, and to address the disparities in healthcare access and outcomes. Our findings highlight the ongoing challenges in pediatric cardiology and the need for targeted interventions to sustain improvements in CHD survival, especially for neonates and infants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data was reported at 133.993 Ratio in 2015. This records an increase from the previous number of 131.567 Ratio for 2014. United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data is updated yearly, averaging 176.083 Ratio from Dec 1960 (Median) to 2015, with 56 observations. The data reached an all-time high of 240.957 Ratio in 1968 and a record low of 131.037 Ratio in 2013. United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Adult mortality rate, male, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old male dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) University of California, Berkeley, and Max Planck Institute for Demographic Research. The Human Mortality Database.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 7.200 Ratio in 2017. This records a decrease from the previous number of 7.400 Ratio for 2015. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 8.000 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 12.500 Ratio in 1990 and a record low of 7.200 Ratio in 2017. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Portugal PT: Mortality Rate: Infant: Female: per 1000 Live Births data was reported at 2.600 Ratio in 2017. This records a decrease from the previous number of 2.700 Ratio for 2015. Portugal PT: Mortality Rate: Infant: Female: per 1000 Live Births data is updated yearly, averaging 2.900 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 10.200 Ratio in 1990 and a record low of 2.600 Ratio in 2017. Portugal PT: Mortality Rate: Infant: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Portugal – Table PT.World Bank.WDI: Health Statistics. Infant mortality rate, female is the number of female infants dying before reaching one year of age, per 1,000 female live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Diabetes continues to be a significant global health concern, with the Western Pacific region reporting the highest number of diabetes-related deaths in 2024, with around 1.2 million. This stark figure underscores the urgent need for improved diabetes prevention and management strategies worldwide. North America and the Caribbean followed with an estimated 526,000 deaths, while Africa is had the lowest number at 216,000. Regional disparities and global impact The prevalence of diabetes varies significantly across regions, reflecting differences in healthcare systems, lifestyle factors, and genetic predispositions. In the United States, the death rate from diabetes mellitus was 22.4 per 100,000 people in 2023, with 8.4 percent of the adult population living with the condition. Canada has seen a slight decrease in its diabetes-related death rate, falling from 21.8 per 100,000 in 2000 to 18.1 per 100,000 in 2023. These figures highlight the ongoing challenges in managing diabetes, even in countries with advanced healthcare systems. European landscape and global context Within Europe, Germany reported the highest number of diabetes-related deaths in 2024, with nearly 63,000 fatalities among adults aged 20 to 79 years. Italy followed closely with around 62,400 deaths. However, Czechia reported the highest mortality rates in Europe as of 2022, with 43.4 diabetes deaths per 100,000 population overall. On a global scale, diabetes remains a major health concern, with 19 percent of adults worldwide identifying it as one of the biggest health problems in their country.
Russian mortality rates during the Second World War were among the highest in the world. In terms of distribution, over one quarter of all deaths were of infants who had not yet reached one year old, and almost half of all deaths took place among children below the age of five. The distribution of these deaths varied between urban and rural regions, with a higher share of adults dying in urban areas.
The disproportionate impact of the war on male mortality rates, alongside the fact that the natural life expectancy among men is lower than that of women, meant that the share of men who died between the ages of 15 and 64 was much higher than female death rates. For women, the share of deaths among the youngest and oldest age groups were higher than those of men.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Austria AT: Probability of Dying at Age 15-19 Years: per 1000 data was reported at 1.200 Ratio in 2019. This records a decrease from the previous number of 1.300 Ratio for 2018. Austria AT: Probability of Dying at Age 15-19 Years: per 1000 data is updated yearly, averaging 2.500 Ratio from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 3.600 Ratio in 1992 and a record low of 1.200 Ratio in 2019. Austria AT: Probability of Dying at Age 15-19 Years: per 1000 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Austria – Table AT.World Bank.WDI: Health Statistics. Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
The spread of coronavirus (COVID-19) in Italy has hit every age group uniformly and claimed over 190 thousand lives since it entered the country. As the chart shows, however, mortality rate appeared to be much higher for the elderly patient. In fact, for people between 80 and 89 years of age, the fatality rate was 6.1 percent. For patients older than 90 years, this figure increased to 12.1 percent. On the other hand, the death rate for individuals under 60 years of age was well below 0.5 percent. Overall, the mortality rate of coronavirus in Italy was 0.7 percent.
Italy's death toll was one of the most tragic in the world. In the last months, however, the country started to see the end of this terrible situation: as of May 2023, roughly 84.7 percent of the total Italian population was fully vaccinated.
Since the first case was detected at the end of January in Italy, coronavirus has been spreading fast. As of May, 2023, the authorities reported over 25.8 million cases in the country. The area mostly hit by the virus is the North, in particular the region of Lombardy.
For a global overview visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
The significant increase in life expectancy over the past 75 years has largely been driven by reductions in infant and child mortality, and has seen life expectancy from birth increase by 27 years between 1950 and 2024. However, this is not the only driver of increased life expectancy, as humanity has also become much better at prolonging life for adults. In 1950, 65-year-olds could expect to live for another 11 years on average, while this has risen to almost 18 years in 2025. The notable dips in life expectancy are due to China's Great Leap Forward around 1960, famine and conflict in Asia (especially Bangladesh) around 1970, and the COVID-19 pandemic in the early 2020s.