Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of global population trends, historical data, and future projections. It includes detailed information for various countries and regions, encompassing key demographic indicators such as population size, growth rates, and density.
The dataset covers a broad time span, from 1980 to 2050, allowing for analysis of long-term population dynamics. It incorporates data from reputable sources like the United Nations Population Division and World Population Review, ensuring data accuracy and reliability.
The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for China in 2024 was <strong>1,425,178,782</strong>, a <strong>1.03% increase</strong> from 2023.</li>
<li>Total population for China in 2023 was <strong>1,410,710,000</strong>, a <strong>0.1% decline</strong> from 2022.</li>
<li>Total population for China in 2022 was <strong>1,412,175,000</strong>, a <strong>0.01% decline</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of Florida from 1900 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for Japan by year from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Los Angeles metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Population Estimates Program: Population: Resident data was reported at 341,414.000 Person th in Mar 2025. This records an increase from the previous number of 341,272.000 Person th for Feb 2025. United States Population Estimates Program: Population: Resident data is updated monthly, averaging 288,444.500 Person th from Apr 1980 (Median) to Mar 2025, with 540 observations. The data reached an all-time high of 341,414.000 Person th in Mar 2025 and a record low of 226,546.000 Person th in Apr 1980. United States Population Estimates Program: Population: Resident data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.G001: Monthly Population Estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
\(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)
Where:
- \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
- \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
- \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
\(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)
Where:
- \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.
- \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households and Group Quarters
UNITS IDENTIFIED: - Dwellings: No - Vacant units: Yes - Households: Yes - Individuals: Yes - Group quarters: Yes
UNIT DESCRIPTIONS: - Households: Dwelling places with fewer than ten persons unrelated to a household head, excluding institutions and transient quarters. - Group quarters: Institutions, transient quarters, and dwelling places with ten or more persons unrelated to a household head.
Residents of the 50 states (not the outlying areas).
Census/enumeration data [cen]
MICRODATA SOURCE: U.S. Census Bureau
SAMPLE UNIT: Household
SAMPLE FRACTION: 5%
SAMPLE SIZE (person records): 11,343,120
Face-to-face [f2f]
The 1980 census employed a single long form questionnaire completed by one-half of housing units in places with a population under 2,500 and one-sixth of other housing units.
UNDERCOUNT: No official estimates
Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the San Antonio metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Belgium BE: Rural Population Growth data was reported at -1.055 % in 2023. This records an increase from the previous number of -1.122 % for 2022. Belgium BE: Rural Population Growth data is updated yearly, averaging -1.790 % from Dec 1961 (Median) to 2023, with 63 observations. The data reached an all-time high of -0.720 % in 2011 and a record low of -3.817 % in 1980. Belgium BE: Rural Population Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belgium – Table BE.World Bank.WDI: Population and Urbanization Statistics. Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.;World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original and derived data products referenced in the original manuscript are provided in the data package.
Original data:
Table_1_source_papers.csv
: Papers that met review criteria and which are summarized in Table 1 of the manuscript.
Derived data:
change_livestock_country.csv:
A dataframe containing values used to generate Figure 4a in the manuscript.
country_avg_schist_wormy_world.csv
: A dataframe containing values used to generate Figure 3 in the manuscript.
kenya_precip_change_1951_2020.csv
: A dataframe containing values used to generate Figure 4b in the manuscript.
Data were derived from the following sources:
Ogutu, J. O., Piepho, H.-P., Said, M. Y., Ojwang, G. O., Njino, L. W., Kifugo, S. C., & Wargute, P. W. (2016). Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: What are the causes? PloS ONE, 11(9), e0163249. https://doi.org/10.1371/journal.pone.0163249
London Applied & Spatial Epidemiology Research Group (LASER). (2023). Global Atlas of Helminth Infections: STH and Schistosomiasis [dataset]. London School of Hygiene and Tropical Medicine. https://lshtm.maps.arcgis.com/apps/webappviewer/index.html?id=2e1bc70731114537a8504e3260b6fbc0
World Bank Group. (2023). Climate Data & Projections—Kenya. Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/kenya/climate-data-projections
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for France in 2024 was <strong>64,881,830</strong>, a <strong>0.19% increase</strong> from 2023.</li>
<li>Total population for France in 2023 was <strong>64,756,584</strong>, a <strong>0.2% increase</strong> from 2022.</li>
<li>Total population for France in 2022 was <strong>64,626,628</strong>, a <strong>0.15% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
Over the past half a century, the world's electricity consumption has continuously grown, reaching approximately 27,000 terawatt-hours by 2023. Between 1980 and 2023, electricity consumption more than tripled, while the global population reached eight billion people. Growth in industrialization and electricity access across the globe have further boosted electricity demand. China's economic rise and growth in global power use Since 2000, China's GDP has recorded an astonishing 15-fold increase, turning it into the second-largest global economy, behind only the United States. To fuel the development of its billion-strong population and various manufacturing industries, China requires more energy than any other country. As a result, it has become the largest electricity consumer in the world. Electricity consumption per capita In terms of per capita electricity consumption, China and other BRIC countries are still vastly outpaced by developed economies with smaller population sizes. Iceland, with a population of less than half a million inhabitants, consumes by far the most electricity per person in the world. Norway, Qatar, Canada, and the United States also have among the highest consumption rates. Multiple contributing factors such as the existence of power-intensive industries, household sizes, living situations, appliance and efficiency standards, and access to alternative heating fuels determine the amount of electricity the average person requires in each country.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.