In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
The statistic shows the global population as of mid-2022, sorted by age. In mid-2022, approximately two thirds of the global population were aged between 15 and 64 years.
The Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
Between 1800 and 2021, the total population of each continent experienced consistent growth, however as growth rates varied by region, population distribution has fluctuated. In the early 19th century, almost 70 percent of the world's population lived in Asia, while fewer than 10 percent lived in Africa. By the end of this century, it is believed that Asia's share will fall to roughly 45 percent, while Africa's will be on course to reach 40 percent. 19th and 20th centuries Fewer than 2.5 percent of the world's population lived in the Americas in 1800, however the demographic transition, along with waves of migration, would see this share rise to almost 10 percent a century later, peaking at almost 14 percent in the 1960s. Europe's share of the global population also grew in the 19th century, to roughly a quarter in 1900, but fell thereafter and saw the largest relative decline during the 20th century. Asia, which has consistently been the world's most populous continent, saw its population share drop by the mid-1900s, but it has been around 60 percent since the 1970s. It is important to note that the world population has grown from approximately one to eight billion people between 1800 and the 2020s, and that declines in population distribution before 2020 have resulted from different growth rates across the continents. 21st century Africa's population share remained fairly constant throughout this time, fluctuating between 7.5 and 10 percent until the late-1900s, but it is set to see the largest change over the 21st century. As Europe's total population is now falling, and it is estimated that the total populations of Asia and the Americas will fall by the 2050s and 2070s respectively, rapid population growth in Africa will see a significant shift in population distribution. Africa's population is predicted to grow from 1.3 to 3.9 billion people over the next eight decades, and its share of the total population will rise to almost 40 percent. The only other continent whose population will still be growing at this time will be Oceania, although its share of the total population has never been more than 0.7 percent.
QUEST projects both used and produced an immense variety of global data sets that needed to be shared efficiently between the project teams. These global synthesis data sets are also a key part of QUEST's legacy, providing a powerful way of communicating the results of QUEST among and beyond the UK Earth System research community. This dataset contains global Population Distribution (1990), Terrestrial Area and Country Name Information on a One by One Degree Grid Cell Basis.
Web Map Service that supports the IRENA Global Atlas for Renewable EnergyThe LandScan 2018 Global Population Database was developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD).ORNL’s LandScan™ is a community standard for global population distribution data. At approximately 1 km (30″ X 30″) spatial resolution, it represents an ambient population (average over 24 hours) distribution. The database is refreshed annually and released to the broader user community around October. LandScan™ is now available at no cost to the educational community. The latest LandScan™ dataset available is LandScan Global 2018. Older LandScan Global data sets (LandScan 1998, 2000-2017) are available through site. These data set can be licensed for commercial and other applications through multiple third-party vendors. LandScan is developed using best available demographic (Census) and geographic data, remote sensing imagery analysis techniques within a multivariate dasymetric modeling framework to disaggregate census counts within an administrative boundary. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution is essentially a combination of locally adoptive models that are tailored to match the data conditions and geographical nature of each individual country and region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 0.51 percent. The highest value was in India: 17.91 percent and the lowest value was in Andorra: 0 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Until 2100, the world's population is expected to be ageing. Whereas people over 60 years made up less than 13 percent of the world's population in 2024, this share is estimated to reach 28.8 percent in 2100. On the other hand, the share of people between zero and 14 years was expected to decrease by almost ten percentage points over the same period.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
Using an innovative approach with Geographic Information Systems and Remote Sensing, ORNL’s LandScan is the community standard for global population distribution. At 30 arc-second (approximately 1 km) resolution, LandScan is the finest resolution global population distribution data available and represents an “ambient population” (average over 24 hours). The LandScan algorithm, an R&D 100 Award Winner, uses spatial data and imagery analysis technologies and a multi-variable dasymetric modeling approach to disaggregate census counts within an administrative boundary. LandScan population data are spatially explicit - unlike tabular Census data. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution models are tailored to match the data conditions and geographical nature of each individual country and region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spatially explicit population grid can play an important role in climate change, resource management, sustainable development and other fields. Several gridded datasets already exist, but global data, especially high-resolution data on future populations are largely lacking. Based on the WorldPop dataset, we present a global gridded population dataset covering 248 countries or areas at 30 arc-seconds (approximately 1 km) spatial resolution with 5-year intervals for the period 2020–2100 by implementing Random Forest (RF) algorithm. Our dataset is quantitatively consistent with the Shared Socioeconomic Pathways’ (SSPs) national population. The spatially explicit population grid we predicted in this research is validated by comparing it with the WorldPop dataset both at the sub-national level and grid level. 3569 provinces (almost all provinces on the globe) and more than 480 thousand grids are taken into verification, and the results show that our dataset can serve as an input for predictive research in various fields.
Population databases are forming the backbone of many important studies modelling the complex interactions between population growth and environmental degradation, predicting the effects of global climate change on humans, and assessing the risks of various hazards such as floods, air pollution and radiation. Detailed information on population size, growth and distribution (along with many other environmental parameters) is of fundamental importance to such efforts. This database includes rural population distributions, population distrbution for cities and gridded global population distributions.
This project has provided a population database depicting the
worldwide distribution of population in a 1X1 latitude/longitude grid
system. The database is unique, firstly, in that it makes use of the
most recent data available (1990). Secondly, it offers true
apportionment for each grid cell that is, if a cell contains
populations from two different countries, each is assigned a
percentage of the grid cell area, rather than artificially assigning
the whole cell to one or the other country (this is especially
important for European countries). Thirdly, the database gives the
percentage of a country's total population accounted for in each
cell. So if a country's total in a given year around 1990 (1989 or
1991, for example) is known, then population in each cell can be
calculated by using the percentage given in the database with the
assumption that the growth rate in each cell of the country is the
same. And lastly, this dataset is easy to be updated for each country
as new national population figures become available.
https://koordinates.com/license/attribution-4-0-international/https://koordinates.com/license/attribution-4-0-international/
Contact: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory
Address: landscan@ornl.gov
Online Resource: https://landscan.ornl.gov
Standard Name: ISO 19139 Geographic Information - Metadata - Implementation Specification
Standard Version: 2007
Title: LandScan Global 2005
Publication Date: 2006-07-01
Creation Date: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory
Other Citation Details: https://doi.org/10.48690/1524201
Abstract: Using an innovative approach that combines Geographic Information Science, remote sensing technology, and machine learning algorithms, ORNL’s LandScan is the community standard for global population distribution. At 30 arc-second (approximately 1 km) resolution, LandScan is the finest resolution global population distribution data available representing an “ambient population” (average over 24 hours). The LandScan algorithm, an R&D 100 Award Winner, uses spatial data, high-resolution imagery exploitation, and a multi-variable dasymetric modeling approach to disaggregate census counts within an administrative boundary. LandScan population data are spatially explicit - unlike tabular Census data. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution models are tailored to match the data conditions and geographical nature of each individual country and region. By modeling an ambient population, LandScan Global captures the full potential activity space of people throughout the course of the day and night rather than just a residential location.
Purpose: LandScan Global was developed on behalf of the U.S. federal government and is used for rapid consequence and risk assessment as well as emergency planning and management.
Credit: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory; US DOD
Creative Commons Attribution 4.0 International License
The Gridded Population of the World, version 3 (GPWv3) depicts the distribution of human population across the globe. The data product renders global population data at the scale and extent required to demonstrate the spatial relationship of human populations and the environment across the globe. The purpose of GPWv3 is to provide a spatially disaggregated population layer that is compatible with data sets from social, economic, and Earth science fields. The gridded data set is constructed from national or subnational input units (usually administrative units) of varying resolutions. The native grid cell resolution is 2.5 arc-minutes, or ~5km at the equator, although aggregates at coarser resolutions are also provided. Separate grids are available for population count and density per grid cell. Population data estimates are provided for 1990, 1995, and 2000, and projected to 2005, 2010, and 2015.
A global database of Direct Marketing Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future. Leverage up-to-date audience targeting population trends for market research, audience targeting, and sales territory mapping.
Self-hosted marketing population dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Demographic Data is standardized, unified, and ready to use.
Use cases for the Global Consumer Behavior Database (Direct Marketing Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Audience targeting
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Demographic data export methodology
Our population data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our Consumer databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps:
* Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years.
* Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years.
* Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added.
* The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years.
* Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.
As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.
This dataset contains human population density for the state of California and a small portion of western Nevada for the year 2000. The population density is based on US Census Bureau data and has a cell size of 990 meters.
The purpose of the dataset is to provide a consistent statewide human density GIS layer for display, analysis and modeling purposes.
The state of California, and a very small portion of western Nevada, was divided into pixels with a cell size 0.98 km2, or 990 meters on each side. For each pixel, the US Census Bureau data was clipped, the total human population was calculated, and that population was divided by the area to get human density (people/km2) for each pixel.
As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.
The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.
African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.
For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.
References:
Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.
Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.
UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.
WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set provides a set of population density and water withdrawal intensity products from 1960 to 2020 distributed to the administrative units or the corresponding regions. It fills the gaps in the multi-year data set for the accuracy of population density and the intensity of water withdrawal to ensure the accuracy of the time series and the demand of spatially distributed data sets.
” A data set of distributed global population and water withdrawal from 1960 to 2020 “
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.