Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for the world in 2024 was <strong>8,118,835,999</strong>, a <strong>0.71% increase</strong> from 2023.</li>
<li>Total population for the world in 2023 was <strong>8,061,876,001</strong>, a <strong>0.9% increase</strong> from 2022.</li>
<li>Total population for the world in 2022 was <strong>7,989,981,520</strong>, a <strong>0.87% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>World population growth rate for 2022 was <strong>0.79%</strong>, a <strong>0.07% decline</strong> from 2021.</li>
<li>World population growth rate for 2021 was <strong>0.87%</strong>, a <strong>0.15% decline</strong> from 2020.</li>
<li>World population growth rate for 2020 was <strong>1.01%</strong>, a <strong>0.05% decline</strong> from 2019.</li>
</ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
This map comes from a preliminary release of the Gridded Population of the World, Version 4 (GPWv4). GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses at a scale and extent sufficient to demonstrate the spatial relationship between human populations and the environment across the globe. This population grid provides globally-consistent and spatially-explicit data for use in research, policy making, and communications and is compatible with data sets from social, economic, and Earth science fields.GPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators.The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this preliminary release consists only of total population estimates for the year 2010. This data is being released now to allow users early access to the population grids.Source: Columbia University, CIESIN
In 2022, there were around 1.39 billion Catholics worldwide, approximately 17.7 percent of the total global population. Even though the Catholic population has increased in absolute numbers, the share of Catholics has always fluctuated around 17 percent since 2010.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
Description to be added
The LandScan 2010 global population data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan has been developed as part of the Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk. The LandScan files are available via the internet in ESRI grid format by continent and for the world. At approximately 1 km resolution (30" X 30"), There is also a "Layer" file (lspop2000.lyr) for ArcGIS. LandScan is the finest resolution global population distribution data available and represents an ambient population (average over 24 hours). This dataset is part of the LandScan 2000 Global Population Database (2000-2010).
https://koordinates.com/license/attribution-4-0-international/https://koordinates.com/license/attribution-4-0-international/
Contact: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory
Address: landscan@ornl.gov
Online Resource: https://landscan.ornl.gov
Standard Name: ISO 19139 Geographic Information - Metadata - Implementation Specification
Standard Version: 2007
Title: LandScan Global 2010
Publication Date: 2011-07-01
Creation Date: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory
Other Citation Details: https://doi.org/10.48690/1524206
Abstract: Using an innovative approach that combines Geographic Information Science, remote sensing technology, and machine learning algorithms, ORNL’s LandScan is the community standard for global population distribution. At 30 arc-second (approximately 1 km) resolution, LandScan is the finest resolution global population distribution data available representing an “ambient population” (average over 24 hours). The LandScan algorithm, an R&D 100 Award Winner, uses spatial data, high-resolution imagery exploitation, and a multi-variable dasymetric modeling approach to disaggregate census counts within an administrative boundary. LandScan population data are spatially explicit - unlike tabular Census data. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution models are tailored to match the data conditions and geographical nature of each individual country and region. By modeling an ambient population, LandScan Global captures the full potential activity space of people throughout the course of the day and night rather than just a residential location.
Purpose: LandScan Global was developed on behalf of the U.S. federal government and is used for rapid consequence and risk assessment as well as emergency planning and management.
Credit: Human Geography, Geospatial Science and Human Security Division, Oak Ridge National Laboratory; US DOD
Creative Commons Attribution 4.0 International License
Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.S. population growth rate for 2022 was <strong>0.37%</strong>, a <strong>0.21% increase</strong> from 2021.</li>
<li>U.S. population growth rate for 2021 was <strong>0.16%</strong>, a <strong>0.81% decline</strong> from 2020.</li>
<li>U.S. population growth rate for 2020 was <strong>0.97%</strong>, a <strong>0.51% increase</strong> from 2019.</li>
</ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010-2100 consists of global spatial population projections at a resolution of one-eighth degree (7.5 arc-minutes) for urban, rural, and total population, consistent both quantitatively and qualitatively, with the SSPs at ten-year intervals for 2010-2100. Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is produced based on a clear need for plausible alternative projections of spatial distribution of the population that can represent patterns of development consistent with the SSPs.
Human: areas where population growth (>100hab/km2) is exacerbating climate change impacts - baseline (1981-2010)
The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100 consists of global spatial population projections at a resolution of 1-km (about 30 arc-seconds) for urban, rural, and total population, and at ten-year intervals for 2010-2100. The projections are consistent both quantitatively and qualitatively with the Shared Socioeconomic Pathways (SSPs). This data set is a downscaled version of the Global Population Projection Grids Based on SSPs, v1 (2010-2100), published in Jones and O'Neill (2016). The downscaling methods were published in Gao (2017). Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is distributed in GeoTIFF and netCDF formats.
LandScan Global Population Database 2010. Population counts at 30 arc second resolution.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data Summary:GPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended Citation:Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR
This statistic depicts a projection of the global population aged 65 and over between 2010 and 2050, sorted by geographic area. In 2025, there will be some 119 million people aged 65 and over in Europe. That would be some 16 percent of the total European population.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.
The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.
This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.
Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.
This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.
This dataset (world_population_data.csv
) covering from 1970 up to 2023 includes the following columns:
Column Name | Description |
---|---|
Rank | Rank by Population |
CCA3 | 3 Digit Country/Territories Code |
Country | Name of the Country |
Continent | Name of the Continent |
2023 Population | Population of the Country in the year 2023 |
2022 Population | Population of the Country in the year 2022 |
2020 Population | Population of the Country in the year 2020 |
2015 Population | Population of the Country in the year 2015 |
2010 Population | Population of the Country in the year 2010 |
2000 Population | Population of the Country in the year 2000 |
1990 Population | Population of the Country in the year 1990 |
1980 Population | Population of the Country in the year 1980 |
1970 Population | Population of the Country in the year 1970 |
Area (km²) | Area size of the Country/Territories in square kilometer |
Density (km²) | Population Density per square kilometer |
Growth Rate | Population Growth Rate by Country |
World Population Percentage | The population percentage by each Country |
The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.
© Image credit: Freepik
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for the world in 2024 was <strong>8,118,835,999</strong>, a <strong>0.71% increase</strong> from 2023.</li>
<li>Total population for the world in 2023 was <strong>8,061,876,001</strong>, a <strong>0.9% increase</strong> from 2022.</li>
<li>Total population for the world in 2022 was <strong>7,989,981,520</strong>, a <strong>0.87% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.