The statistic shows the development of the world population from 1950 to 2050. The world population was around 7.38 billion people in 2015.
The global population
As shown above, the total number of people living on Earth has more than doubled since the 1950s, and continues to increase. A look at the development of the world population since the beginning of the Common Era shows that such a surge in numbers is unprecedented. The first significant rise in population occurred during the 14th century, after the Black Death had killed approximately 25 million people worldwide. Subsequently, the global population increased slowly but steadily until it reached record numbers between 1950 and 2000.
The majority of the global population lives on the Asian continent, as a statistic of the world population by continent shows. In around 100 years, it is estimated that population levels on the African continent will have reached similar levels to those we see in Asia today. As for a forecast of the development of the world population, the figures are estimated to have reached more than 10 billion by the 22nd century.
Growing population numbers pose an increasing risk to the planet, since rocketing numbers equal increased consumption of food and resources. Scientists worry that natural resources, such as oil, and food resources will become scarce, endangering the human race and, even more so, the world’s ecosystem. Nowadays, the number of undernourished / starving people worldwide has decreased slightly, but forecasts paint a darker picture.
This statistic shows the contribution of the reduction in mortality to future global population growth from 2015 to 2100. Decreased mortality is projected to contribute over 1.1 billion people to the population growth of less developed regions of the world by 2100.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
Description to be added
This statistic shows the contribution of migration to projected global population growth from 2015 to 2100. Migration is projected to contribute over 289 million people to the population of more developed regions of the world in 2100 .
The FGGD estimated 2015 global population density map is a global raster datalayer with a resolution of 2.5 arc-minutes. Each pixel contains an estimated value for persons per square kilometre in 2015, obtained by applying population growth trends to population counts for the lowest subnational administrative unit for which 2000 population data were available. The method used by FAO and CIESIN to generate this datalayer is described in FAO, 2005, Mapping global urban and rural population distributions, by M. Salvatore, et. al.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data Summary:GPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended Citation:Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR
This statistic shows the contribution of fertility to future global population growth from 2015 to 2100. Decreased fertility will reduce forecasted population growth in more developed regions of the world by over 333 million people by 2100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers with respect to relative spatial distribution, but adjusted to match the 2015 Revision of the United Nation's World Population Prospects (UN WPP) country totals, for the years 2000, 2005, 2011, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign UN WPP-adjusted population counts to 30 arc-second grid cells. The density rasters were created by dividing the UN WPP-adjusted population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second adjusted count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions. To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers with respect to relative spatial distribution, but adjusted to match United Nations country totals.
By 2030, the middle-class population in Asia-Pacific is expected to increase from **** billion people in 2015 to **** billion people. In comparison, the middle-class population of sub-Saharan Africa is expected to increase from *** million in 2015 to *** million in 2030. Worldwide wealth While the middle-class has been on the rise, there is still a huge disparity in global wealth and income. The United States had the highest number of individuals belonging to the top one percent of wealth holders, and the value of global wealth is only expected to increase over the coming years. Around ** percent of the world’s population had assets valued at less than 10,000 U.S. dollars, while less than *** percent had assets of more than one million U.S. dollars. Asia had the highest percentage of investable assets in the world in 2018, whereas Oceania had the highest percentage of non-investable assets. The middle-class The middle class is the group of people whose income falls in the middle of the scale. China accounted for over half of the global population for middle-class wealth in 2017. In the United States, the debate about the middle class “disappearing” has been a popular topic due to the increase in wealth among the top billionaires in the nation. Due to this, there have been arguments to increase taxes on the rich to help support the middle class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions. To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimates of human population for the year 2015 by 2.5 arc-minute grid cells. 2015 global population density from CIESIN Gridded Population of the World version 4. Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ Accessed 5 April 2017.
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT). To provide a time series of raster data on population projected to the year 2015 to facilitate data integration.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data SummaryGPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended CitationCenter for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR
The Gridded Population of the World, Version 3 (GPWv3): Centroids consists of estimates of human population counts and densities for the years 1990, 1995, 2000, 2005, 2010, and 2015 by administrative Unit centroid location. The centroids are based on the 399,781 input administrative Units used in GPWv3. In addition to population counts and variables, the centroids have associated administrative Unit names and the land area of contained within the administrative Unit. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
This statistic shows the percentage of population without access to improved water sources worldwide from 1990 to 2015. In 2010, some **** percent of the world's population had no access to improved water.
The Gridded Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates consists of UN-adjusted estimates of human population counts and densities for the years 2000, 2005, 2010, 2015 and 2020 by administrative unit center point (centroid) location. Specifically, the population data were adjusted to the 2015 Revision of UN World Population Prospects. The center points are based on approximately 12.5 million input administrative units used in GPWv4. Additionally, the administrative unit names, unit areas, and data context of the units are included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
The Pop-AUT database was developed for the DISCC-AT project, which required subnational population projections for Austria consistent with the updated Shared Socio-Economic Pathways (SSPs). For this database, the most recent version of the nationwide SSP population projections (IIASA-WiC POP 2023) are spatially downscaled, offering a detailed perspective at the subnational level in Austria. Recognizing the relevance of this information for a wider audience, the data has been made publicly accessible through an interactive dashboard. There, users are invited to explore how the Austrian population is projected to evolve under different SSP scenarios until the end of this century.
Methodology
The downscaling process of the nationwide Shared Socioeconomic Pathways (SSP) population projections is a four-step procedure developed to obtain subnational demographic projections for Austria. In the first step, population potential surfaces for Austria are derived. These indicate the attractiveness of a location in terms of habitability and are obtained using machine learning techniques, specifically random forest models, along with geospatial information such as land use, roads, elevation, distance to cities, and elevation (see, e.g., Wang et al. 2023).
The population potential surfaces play a crucial role in distributing the Austrian population effectively across the country. Calculations are based on the 1×1 km spatial resolution database provided by Wang et al. (2023), covering all SSPs in 5-year intervals from 2020 to 2100.
Moving to the second step, the updated nationwide SSP population projections for Austria (IIASA-WiC POP 2023) are distributed to all 1×1 km grid cells within the country. This distribution is guided by the previously computed grid cell-level population potential surfaces, ensuring a more granular representation of demographic trends.
The base year for all scenarios is 2015, obtained by downscaling the UN World Population Prospects 2015 count for Austria using the WorldPop (2015) 1×1 km population count raster.
In the third step, the 1×1 km population projections are temporally interpolated to obtain yearly projections for all SSP scenarios spanning the period from 2015 to 2100.
The final step involves the spatial aggregation of the gridded SSP-consistent population projections to the administrative levels of provinces (Bundesländer), districts (Bezirke), and municipalities (Gemeinden).
Dashboard
The data can be explored interactively through a dashboard.
Data Inputs
Updated nationwide SSP population projections: IIASA-WiC POP (2023) (https://zenodo.org/records/7921989)
Population potential surfaces: Wang, X., Meng, X., & Long, Y. (2022). Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Scientific Data, 9(1), 563.
Shapefiles: data.gv.at
WorldPop 2015: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647
Version
This is version 1.0, built upon the Review-Phase 2 version of the updated nationwide SSP population projections (IIASA-WiC POP 2023). Once these projections are revised, this dataset will be accordingly updated.
File Organization
The SSP-consistent population projections for Austria are accessible in two formats: .csv files for administrative units (provinces = Bundesländer, districts = Politische Bezirke, municipalities = Gemeinden) and 1×1 km raster files in GeoTIFF and NetCDF formats. All files encompass annual population counts spanning from 2015 to 2100.
The Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals consists of estimates of human population consistent with national censuses and population registers with respect to relative spatial distribution, but adjusted to match 2015 Revision of UN World Population Prospects country totals for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 12.5 million national and sub-national administrative units, is used to assign population values to 30 arc-second (~1 km) grid cells. The grids contain estimates of the number of persons per grid cell.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
The statistic shows the development of the world population from 1950 to 2050. The world population was around 7.38 billion people in 2015.
The global population
As shown above, the total number of people living on Earth has more than doubled since the 1950s, and continues to increase. A look at the development of the world population since the beginning of the Common Era shows that such a surge in numbers is unprecedented. The first significant rise in population occurred during the 14th century, after the Black Death had killed approximately 25 million people worldwide. Subsequently, the global population increased slowly but steadily until it reached record numbers between 1950 and 2000.
The majority of the global population lives on the Asian continent, as a statistic of the world population by continent shows. In around 100 years, it is estimated that population levels on the African continent will have reached similar levels to those we see in Asia today. As for a forecast of the development of the world population, the figures are estimated to have reached more than 10 billion by the 22nd century.
Growing population numbers pose an increasing risk to the planet, since rocketing numbers equal increased consumption of food and resources. Scientists worry that natural resources, such as oil, and food resources will become scarce, endangering the human race and, even more so, the world’s ecosystem. Nowadays, the number of undernourished / starving people worldwide has decreased slightly, but forecasts paint a darker picture.