Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
This dataset contains market data from various countries, organized into a hierarchical structure. It includes information such as share prices, trading volumes, market capitalization, and industry classifications.
The dataset is organized as follows:
Each country folder likely contains specific market data for companies within that region.
The dataset includes the following fields:
This dataset can be used for various purposes, including: - Market analysis - Comparative studies across different countries - Industry sector analysis - Investment research
Please ensure you have the necessary permissions and comply with all relevant data usage regulations when using this dataset.
For the latest version and updates to this dataset, please check the source regularly.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Global Stock Market Financial Dataset (from TradingView)
This collection provides a comprehensive snapshot of over 11,800 publicly traded companies worldwide. It combines multiple financial statements and performance indicators extracted from TradingView to support data analysis, stock screening, and financial modeling.
Files Overview
1.tradingview_all_stocks.csv Contains general stock information and market statistics.
Columns: ticker, name, close, change, change_abs, volume, market_cap_basic, price_earnings_ttm, sector, industry Size: 11,806 rows × 10 columns Description: Lists all active stocks with latest prices, PE ratios, and sector/industry classifications.
2.tradingview_performance.csv Tracks short- and long-term stock performance.
Columns (sample): ticker, name, close, Perf.W, Perf.1M, Perf.3M, Perf.6M, Perf.YTD, Perf.1Y, Perf.5Y, etc. Size: 11,814 rows × 17 columns Description: Shows relative percentage performance across multiple timeframes.
3.balance_sheet.csv Summarizes financial position and liquidity metrics.
Columns: total_assets_fq, cash_n_short_term_invest_fq, total_liabilities_fq, total_debt_fq, net_debt_fq, total_equity_fq, current_ratio_fq Size: 11,821 rows × 12 columns Description: Includes key balance sheet values, enabling leverage and liquidity analysis.
4.cashflow.csv Focuses on company cash generation and sustainability.
Columns: free_cash_flow_ttm Size: 11,821 rows × 4 columns Description: Provides trailing twelve-month free cash flow figures for profitability evaluation.
5.dividends.csv Details dividend-related statistics.
Columns: dividends_yield, dividend_payout_ratio_ttm Size: 11,823 rows × 5 columns Description: Useful for income-focused investors; includes dividend yields and payout ratios.
6.income_statement.csv Presents company earnings metrics.
Columns: total_revenue_ttm, gross_profit_ttm, net_income_ttm, ebitda_ttm Size: 11,821 rows × 7 columns Description: Captures profitability over the last 12 months for revenue and margin analysis.
7.profitability.csv Shows margin-based performance indicators.
Columns: gross_margin_ttm, operating_margin_ttm, net_margin_ttm, ebitda_margin_ttm Size: 11,823 rows × 7 columns Description: Enables efficiency and operational performance comparisons across companies.
Use Cases 1. Stock market and financial analysis 2. Portfolio optimization and factor modeling 3. Machine learning for price prediction 4. Company benchmarking and screening 5. Academic or educational use in finance courses
Data Source & Notes 1. All data was aggregated from TradingView using public financial data endpoints. 2. Missing values may occur for companies that do not report certain metrics. 3. All monetary figures are based on the latest available TTM (Trailing Twelve Months) or FQ (Fiscal Quarter) data at the time of extraction.
Facebook
TwitterAs of early 2025, companies in the information technology sector made up ** percent of the total market capitalization of all stock exchanges worldwide. The second largest sector on stock markets worldwide was the financial services industry, accounting for ** percent of the total, followed by the industrials sector with ** percent. On the other hand, real estate and utilities were the least represented sectors on stock markets worldwide, accounting for ***** percent of total market capitalization, respectively.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Description: The "Global Stock Price Archive" is a comprehensive dataset that provides a historical record of stock prices from a wide range of stock markets across the globe. This dataset is a valuable resource for researchers, investors, and analysts seeking to analyze trends, perform financial research, or develop trading strategies. Multi-Market Coverage: Historical stock price data from major stock exchanges worldwide, such as the New York Stock Exchange (NYSE), NASDAQ, London Stock Exchange (LSE), Tokyo Stock Exchange (TSE), and many others.
Time Series Data: Daily, weekly, or monthly stock price information over a significant timeframe, allowing users to track the performance of individual stocks or market indices.
Ticker Symbols: Ticker symbols or stock codes for easy identification of individual companies or securities.
Open, Close, High, Low Prices: Detailed pricing information, including opening prices, closing prices, daily highs, and lows.
Volume and Trading Data: Trading volumes, bid-ask spreads, and other relevant trading statistics.
Adjustments: Adjusted prices to account for factors like dividends, stock splits, and other corporate actions.
Data Formats: The dataset may be available in various formats, such as CSV, Excel, or API access, to accommodate different user needs
Facebook
TwitterThe value of global domestic equity market increased from ***** trillion U.S. dollars in 2013 to ****** trillion U.S. dollars in 2024. The United States was by far the leading country with the largest share of total world stocks as of 2024. Global market capitalization in different regions The market capitalization of domestic companies listed varied across different regions of the world. As of Decmber 2024, the Americas region had the largest domestic equity market, totaling ** trillion U.S. dollars. This region is home to the NYSE and Nasdaq, which are the two largest stock exchange operators in the world. The market capitalization of these two exchanges alone exceeded ** billion U.S. dollars as of January 2025, larger than the total market capitalization in the Asia-Pacific, and in the EMEA regions in the same period. Largest Stock Exchanges in Latin America As of December 2024, the B3 (Brasil Bolsa Balcao) was the biggest stock exchange in Latin America in terms of market capitalization and the second-largest in terms of number of listed companies. Following the B3 were the Mexican Stock Exchange and the Santiago Stock Exchange in Chile. The most valuable company in Latin America is listed on the Mexican Stock Exchange: Fomento Económico Mexicano, a multinational beverage and retail company headquartered in Monterrey, had a market cap of *** billion U.S. dollars as of March 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WSP Global stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterAs of early 2025, companies in the information technology sector made up ** percent of the total market capitalization of all stock exchanges worldwide. Tech companies worldwide had a combined market capitalization of approximately ** trillion U.S. dollars. The second largest sector on stock markets worldwide was the financial services industry, with a market cap of ** trillion U.S. dollars, followed by the industrials sector with ** trillion U.S. dollars. On the other hand, real estate and utilities were the least represented sectors on stock markets worldwide.
Facebook
TwitterWhile the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around ** percent of their value compared to January *, 2020. However, Asian markets and the NASDAQ Composite Index only shed around ** to ** percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around ** percent higher than in January 2020, while most other markets were only between ** and ** percent higher. Why did the NASDAQ recover the quickest? Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide. Which markets suffered the most? The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.
Key Features Market Metrics:
Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:
RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:
Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:
GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:
Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:
Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Egypt EG: Stocks Traded: Total Value data was reported at 14.429 USD bn in 2017. This records an increase from the previous number of 10.080 USD bn for 2016. Egypt EG: Stocks Traded: Total Value data is updated yearly, averaging 21.767 USD bn from Dec 2006 (Median) to 2017, with 12 observations. The data reached an all-time high of 95.827 USD bn in 2008 and a record low of 10.080 USD bn in 2016. Egypt EG: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Egypt – Table EG.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Volatility of Stock Price Index for Oman (DDSM01OMA066NWDB) from 1992 to 2021 about Oman, volatility, stocks, price index, indexes, and price.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global Payments stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Volatility of Stock Price Index for Czech Republic (DDSM01CZA066NWDB) from 1995 to 2021 about Czech Republic, volatility, stocks, price index, indexes, and price.
Facebook
TwitterThe value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Stock Prices: 12 Months Expectation: Same data was reported at 15.400 % in Apr 2025. This records a decrease from the previous number of 18.400 % for Mar 2025. United States Stock Prices: 12 Months Expectation: Same data is updated monthly, averaging 36.100 % from Jun 1987 (Median) to Apr 2025, with 455 observations. The data reached an all-time high of 45.300 % in Jul 2005 and a record low of 15.400 % in Apr 2025. United States Stock Prices: 12 Months Expectation: Same data remains active status in CEIC and is reported by The Conference Board. The data is categorized under Global Database’s United States – Table US.H052: Consumer Confidence Index: Stock Price Expectation. [COVID-19-IMPACT]
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan PK: Stocks Traded: Total Value data was reported at 27.536 USD bn in 2016. This records an increase from the previous number of 27.108 USD bn for 2015. Pakistan PK: Stocks Traded: Total Value data is updated yearly, averaging 20.824 USD bn from Dec 1996 (Median) to 2016, with 21 observations. The data reached an all-time high of 140.293 USD bn in 2004 and a record low of 539.700 USD mn in 2014. Pakistan PK: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 75 countries was 1225.97 billion U.S. dollars. The highest value was in the USA: 40297.98 billion U.S. dollars and the lowest value was in Bermuda: 0.21 billion U.S. dollars. The indicator is available from 1975 to 2024. Below is a chart for all countries where data are available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Stock Prices: 12 Months Expectation: Decrease data was reported at 48.500 % in Apr 2025. This records an increase from the previous number of 41.700 % for Mar 2025. United States Stock Prices: 12 Months Expectation: Decrease data is updated monthly, averaging 26.900 % from Jun 1987 (Median) to Apr 2025, with 455 observations. The data reached an all-time high of 54.900 % in Jul 2008 and a record low of 15.300 % in Jan 2000. United States Stock Prices: 12 Months Expectation: Decrease data remains active status in CEIC and is reported by The Conference Board. The data is categorized under Global Database’s United States – Table US.H052: Consumer Confidence Index: Stock Price Expectation. [COVID-19-IMPACT]
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
This dataset contains market data from various countries, organized into a hierarchical structure. It includes information such as share prices, trading volumes, market capitalization, and industry classifications.
The dataset is organized as follows:
Each country folder likely contains specific market data for companies within that region.
The dataset includes the following fields:
This dataset can be used for various purposes, including: - Market analysis - Comparative studies across different countries - Industry sector analysis - Investment research
Please ensure you have the necessary permissions and comply with all relevant data usage regulations when using this dataset.
For the latest version and updates to this dataset, please check the source regularly.