Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
This vector tile layer presents the World Topographic Map (Local Language) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic (Local Language) web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This vector tile layer presents the World Topographic Map (with Contours and Hillshade) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style, including both vector contour lines and vector hillshade. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This vector tile layer provides unique capabilities for customization and high-resolution display.This is a multisource vector map style. The root.json style file calls three vector tile services to display all the data in the map. The "esri" source contains all the basemap tiles for this layer. The other two sources are "contours" and "hillshade". Click the View style button on right to see the json. The multisource section of this code is shown below."sources": { "esri": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer" }, "contours": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Contours_v2/VectorTileServer" }, "hillshade": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Hillshade_v2/VectorTileServer" } },This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic (Vector) web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Topographic Map. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. See World Topographic Map for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Topographic Map.Service Information for DevelopersTo export tiles for World Topographic Map (for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
This map shows the extent of the various datasets comprising the World Elevation dynamic (Terrain, TopoBathy) and tiled (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) services.The tiled services (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) also include an additional data source from Maxar's Precision3D covering parts of the globe.Topography sources listed in the table below are part of Terrain, TopoBathy, Terrain 3D, TopoBathy 3D, World Hillshade and World Hillshade (Dark), while bathymetry sources are part of TopoBathy and TopoBathy 3D only. Data Source Native Pixel Size Approximate Pixel Size (meters) Coverage Primary Source Country/Region
Topography
Australia 1m 1 meter 1 Partial areas of Australia Geoscience Australia Australia
Moreton Bay, Australia 1m 1 meter 1 Moreton Bay region, Australia Moreton Bay Regional Council Australia
New South Wales, Australia 5m 5 meters 5 New South Wales State, Australia DFSI Australia
SRTM 1 arc second DEM-S 0.0002777777777779 degrees 31 Australia Geoscience Australia Australia
Burgenland 50cm 0.5 meters 0.5 Burgenland State, Austria Land Burgenland Austria
Upper Austria 50cm 0.5 meters 0.5 Upper Austria State, Austria Land Oberosterreich Austria
Austria 1m 1 meter 1 Austria BEV Austria
Austria 10m 10 meters 10 Austria BEV Austria
Wallonie 50cm 0.5 meters 0.5 Wallonie state, Belgium Service public de Wallonie (SPW) Belgium
Vlaanderen 1m 1 meter 1 Vlaanderen state, Belgium agentschap Digitaal Vlaanderen Belgium
Canada HRDEM 1m 1 meter 1 Partial areas of Canada Natural Resources Canada Canada
Canada HRDEM 2m 2 meter 2 Partial areas of the southern part of Canada Natural Resources Canada Canada
Denmark 40cm 0.4 meters 0.4 Denmark KDS Denmark
Denmark 10m 10 meters 10 Denmark KDS Denmark
England 1m 1 meter 1 England Environment Agency England
Estonia 1m 1 meter 1 Estonia Estonian Land Board Estonia
Estonia 5m 5 meters 5 Estonia Estonian Land Board Estonia
Estonia 10m 10 meters 10 Estonia Estonian Land Board Estonia
Finland 2m 2 meters 2 Finland NLS Finland
Finland 10m 10 meters 10 Finland NLS Finland
France 1m 1 meter 1 France IGN-F France
Bavaria 1m 1 meter 1 Bavaria State, Germany Bayerische Vermessungsverwaltung Germany
Berlin 1m 1 meter 1 Berlin State, Germany Geoportal Berlin Germany
Brandenburg 1m 1 meter 1 Brandenburg State, Germany GeoBasis-DE/LGB Germany
Hamburg 1m 1 meter 1 Hamburg State, Germany LGV Hamburg Germany
Hesse 1m 1 meter 1 Hesse State, Germany HVBG Germany
Nordrhein-Westfalen 1m 1 meter 1 Nordrhein-Westfalen State, Germany Land NRW Germany
Saxony 1m 1 meter 1 Saxony State, Germany Landesamt für Geobasisinformation Sachsen (GeoSN) Germany
Sachsen-Anhalt 2m 2 meters 2 Sachsen-Anhalt State, Germany LVermGeo LSA Germany
Hong Kong 50cm 0.5 meters 0.5 Hong Kong CEDD Hong Kong SAR
Italy TINITALY 10m 10 meters 10 Italy INGV Italy
Japan DEM5A *, DEM5B * 0.000055555555 degrees 5 Partial areas of Japan GSI Japan
Japan DEM10B * 0.00011111111 degrees 10 Japan GSI Japan
Latvia 1m 1 meters 1 Latvia Latvian Geospatial Information Agency Latvia
Latvia 10m 10 meters 10 Latvia Latvian Geospatial Information Agency Latvia
Latvia 20m 20 meters 20 Latvia Latvian Geospatial Information Agency Latvia
Lithuania 1m 1 meters 1 Lithuania NZT Lithuania
Lithuania 10m 10 meters 10 Lithuania NZT Lithuania
Netherlands (AHN3/AHN4) 50cm 0.5 meters 0.5 Netherlands AHN Netherlands
Netherlands (AHN3/AHN4) 10m 10 meters 10 Netherlands AHN Netherlands
New Zealand 1m 1 meters 1 Partial areas of New Zealand Land Information New Zealand (Sourced from LINZ. CC BY 4.0) New Zealand
Northern Ireland 10m 10 meters 10 Northern Ireland OSNI Northern Ireland
Norway 10m 10 meters 10 Norway NMA Norway
Poland 1m 1 meter 1 Partial areas of Poland GUGIK Poland
Poland 5m 5 meters 5 Partial areas of Poland GUGIK Poland
Scotland 1m 1 meter 1 Partial areas of Scotland Scottish Government et.al Scotland
Slovakia 1m 1 meter 1 Slovakia ÚGKK SR Slovakia
Slovakia 10m 10 meters 10 Slovakia GKÚ Slovakia
Slovenia 1m 1 meter 1 Slovenia ARSO Slovenia
Madrid City 1m 1 meter 1 Madrid city, Spain Ayuntamiento de Madrid Spain
Spain 2m (MDT02 2019 CC-BY 4.0 scne.es) 2 meters 2 Partial areas of Spain IGN Spain
Spain 5m 5 meters 5 Spain IGN Spain
Spain 10m 10 meters 10 Spain IGN Spain
Varnamo 50cm 0.5 meters 0.5 Varnamo municipality, Sweden Värnamo Kommun Sweden
Canton of Basel-Landschaft 25cm 0.25 meters 0.25 Canton of Basel-Landschaft, Switzerland Geoinformation Kanton Basel-Landschaft Switzerland
Grand Geneva 50cm 0.5 meters 0.5 Grand Geneva metropolitan, France/Switzerland SITG Switzerland and France
Switzerland swissALTI3D 50cm 0.5 meters 0.5 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
Switzerland swissALTI3D 10m 10 meters 10 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
OS Terrain 50 50 meters 50 United Kingdom Ordnance Survey United Kingdom
Douglas County 1ft 1 foot 0.3048 Douglas County, Nebraska, USA Douglas County NE United States
Lancaster County 1ft 1 foot 0.3048 Lancaster County, Nebraska, USA Lancaster County NE United States
Sarpy County 1ft 1 foot 0.3048 Sarpy County, Nebraska, USA Sarpy County NE United States
Cook County 1.5 ft 1.5 foot 0.46 Cook County, Illinois, USA ISGS United States
3DEP 1m 1 meter 1 Partial areas of the conterminous United States, Puerto Rico USGS United States
NRCS 1m 1 meter 1 Partial areas of the conterminous United States NRCS USDA United States
San Mateo County 1m 1 meter 1 San Mateo County, California, USA San Mateo County CA United States
FEMA LiDAR DTM 3 meters 3 Partial areas of the conterminous United States FEMA United States
NED 1/9 arc second 0.000030864197530866 degrees 3 Partial areas of the conterminous United States USGS United States
3DEP 5m 5 meter 5 Alaska, United States USGS United States
NED 1/3 arc second 0.000092592592593 degrees 10 conterminous United States, Hawaii, Alaska, Puerto Rico, and Territorial Islands of the United States USGS United States
NED 1 arc second 0.0002777777777779 degrees 31 conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico USGS United States
NED 2 arc second 0.000555555555556 degrees 62 Alaska, United States USGS United States
Wales 1m 1 meter 1 Wales Welsh Government Wales
WorldDEM4Ortho 0.00022222222 degrees 24 Global (excluding the countries of Azerbaijan, DR Congo and Ukraine) Airbus Defense and Space GmbH World
SRTM 1 arc second 0.0002777777777779 degrees 31 all land areas between 60 degrees north and 56 degrees south except Australia NASA World
EarthEnv-DEM90 0.00083333333333333 degrees 93 Global N Robinson,NCEAS World
SRTM v4.1 0.00083333333333333 degrees 93 all land areas between 60 degrees north and 56 degrees south except Australia CGIAR-CSI World
GMTED2010 7.5 arc second 0.00208333333333333 degrees 232 Global USGS World
GMTED2010 15 arc second 0.00416666666666666 degrees 464 Global USGS World
GMTED2010 30 arc second 0.0083333333333333 degrees 928 Global USGS World
Bathymetry
Canada west coast 10 meters 10 Canada west coast Natural Resources Canada Canada
Gulf of Mexico 40 feet 12 Northern Gulf of Mexico BOEM Gulf of Mexico
MH370 150 meters 150 MH370 flight search area (Phase 1) of Indian Ocean Geoscience Australia Indian Ocean
Switzerland swissBATHY3D 1 - 3 meters 1, 2, 3 Lakes of Switzerland swisstopo Switzerland
NCEI 1/9 arc second 0.000030864197530866 degrees 3 Puerto Rico, U.S Virgin Islands and partial areas of eastern and western United States coast NOAA NCEI United States
NCEI 1/3 arc second 0.000092592592593 degrees 10 Partial areas of eastern and western United States coast NOAA NCEI United States
CRM 1 arc second (Version 2) 0.0002777777777779 degrees 31 Southern California coast of United States NOAA United States
NCEI 1 arc second 0.0002777777777779 degrees 31 Partial areas of northeastern United States coast NOAA NCEI United States
CRM 3 arc second 0.00083333333333333 degrees 93 United States Coast NOAA United States
NCEI 3 arc second 0.00083333333333333 degrees 93 Partial areas of northeastern United States coast NOAA NCEI United States
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:
The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
This is part of a series of 49 maps covering the whole of Australia and forms part of the International Map of the World map series.
At this scale 1 centimetre on the map represents 10 kilometres on the ground. Each map covers an area of six degrees of longitude and four degrees of latitude. The maps show roads, railways, hydrography, larger nature conservation reserves, outback homesteads. Seabed and land relief is shown by layer tints, spot heights and contours in metres. Contour interval is 500 metres, with an additional contour at 200 metres.
Product Specifications Coverage: Whole of Australia covered with 49 maps. National coverage first completed in 1975. Currency: Ranges from 1971 to 1983. Average 1976. Coordinates: Geographical. Datum: AGD66 (GDA94 compliant at this scale); AHD. Projection: Lambert Conformal Conic. Medium: Paper map, flat and folded. Status: These maps are no longer maintained. It is planned to produce a new series of maps from the converted 42 World Aeronautical Charts (WAC) series of maps produced in 2006. These maps are only available as a print on demand product.
This map can be purchased in either flat or folded format.
This is part of a series of 49 maps covering the whole of Australia and forms part of the International Map of the World map series.
At this scale 1 centimetre on the map represents 10 kilometres on the ground. Each map covers an area of six degrees of longitude and four degrees of latitude. The maps show roads, railways, hydrography, larger nature conservation reserves, outback homesteads. Seabed and land relief is shown by layer tints, spot heights and contours in metres. Contour interval is 500 metres, with an additional contour at 200 metres.
Product Specifications Coverage: Whole of Australia covered with 49 maps. National coverage first completed in 1975. Currency: Ranges from 1971 to 1983. Average 1976. Coordinates: Geographical. Datum: AGD66 (GDA94 compliant at this scale); AHD. Projection: Lambert Conformal Conic. Medium: Paper map, flat and folded. Status: These maps are no longer maintained. It is planned to produce a new series of maps from the converted 42 World Aeronautical Charts (WAC) series of maps produced in 2006. These maps are only available as a print on demand product.
This map can be purchased in either flat or folded format.
The Shuttle Radar Topography Mission (SRTM) was flown aboard the space shuttle Endeavour February 11-22, 2000. The National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA) participated in an international project to acquire radar data which were used to create the first near-global set of land elevations.
The radars used during the SRTM mission were actually developed and flown on two Endeavour missions in 1994. The C-band Spaceborne Imaging Radar and the X-Band Synthetic Aperture Radar (X-SAR) hardware were used on board the space shuttle in April and October 1994 to gather data about Earth's environment. The technology was modified for the SRTM mission to collect interferometric radar, which compared two radar images or signals taken at slightly different angles. This mission used single-pass interferometry, which acquired two signals at the same time by using two different radar antennas. An antenna located on board the space shuttle collected one data set and the other data set was collected by an antenna located at the end of a 60-meter mast that extended from the shuttle. Differences between the two signals allowed for the calculation of surface elevation.
Endeavour orbited Earth 16 times each day during the 11-day mission, completing 176 orbits. SRTM successfully collected radar data over 80% of the Earth's land surface between 60° north and 56° south latitude with data points posted every 1 arc-second (approximately 30 meters).
Two resolutions of finished grade SRTM data are available through EarthExplorer from the collection held in the USGS EROS archive:
1 arc-second (approximately 30-meter) high resolution elevation data offer worldwide coverage of void filled data at a resolution of 1 arc-second (30 meters) and provide open distribution of this high-resolution global data set. Some tiles may still contain voids. The SRTM 1 Arc-Second Global (30 meters) data set will be released in phases starting September 24, 2014. Users should check the coverage map in EarthExplorer to verify if their area of interest is available.
3 arc-second (approximately 90-meter) medium resolution elevation data are available for global coverage. The 3 arc-second data were resampled using cubic convolution interpolation for regions between 60° north and 56° south latitude.
[Summary provided by the USGS.]
This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps
The International Map of the World (IMW) series is no longer maintained, and printed copies of this map are no longer available. The Australian portion of the series consists of 49 maps. They were produced to an international specification using the R502 series at 1:250,000 scale as source material. Production commenced in 1926 and was completed in 1978. The maps were revised from time to time and the last reprint was undertaken in 2003. Each standard map sheet covers 4 degrees of latitude by 6 degrees of longitude and was produced using a Lambert Conformal Conic projection with 2 standard parallels. The series has recently been superseded by the 1:1 000 000 topographic map general reference.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
The International Map of the World (IMW) series is no longer maintained, and printed copies of this map are no longer available. The Australian portion of the series consists of 49 maps. They were produced to an international specification using the R502 series at 1:250,000 scale as source material. Production commenced in 1926 and was completed in 1978. The maps were revised from time to time and the last reprint was undertaken in 2003. Each standard map sheet covers 4 degrees of latitude by 6 degrees of longitude and was produced using a Lambert Conformal Conic projection with 2 standard parallels. The series has recently been superseded by the 1:1 000 000 topographic map general reference.
The International Map of the World (IMW) series is no longer maintained, and printed copies of this map are no longer available. The Australian portion of the series consists of 49 maps. They were produced to an international specification using the R502 series at 1:250,000 scale as source material. Production commenced in 1926 and was completed in 1978. The maps were revised from time to time and the last reprint was undertaken in 2003. Each standard map sheet covers 4 degrees of latitude by 6 degrees of longitude and was produced using a Lambert Conformal Conic projection with 2 standard parallels. The series has recently been superseded by the 1:1 000 000 topographic map general reference.
The International Map of the World (IMW) series is no longer maintained, and printed copies of this map are no longer available. The Australian portion of the series consists of 49 maps. They were produced to an international specification using the R502 series at 1:250,000 scale as source material. Production commenced in 1926 and was completed in 1978. The maps were revised from time to time and the last reprint was undertaken in 2003. Each standard map sheet covers 4 degrees of latitude by 6 degrees of longitude and was produced using a Lambert Conformal Conic projection with 2 standard parallels. The series has recently been superseded by the 1:1 000 000 topographic map general reference.
This is part of a series of 49 maps covering the whole of Australia and forms part of the International Map of the World map series.
At this scale 1 centimetre on the map represents 10 kilometres on the ground. Each map covers an area of six degrees of longitude and four degrees of latitude. The maps show roads, railways, hydrography, larger nature conservation reserves, outback homesteads. Seabed and land relief is shown by layer tints, spot heights and contours in metres. Contour interval is 500 metres, with an additional contour at 200 metres.
Product Specifications Coverage: Whole of Australia covered with 49 maps. National coverage first completed in 1975. Currency: Ranges from 1971 to 1983. Average 1976. Coordinates: Geographical. Datum: AGD66 (GDA94 compliant at this scale); AHD. Projection: Lambert Conformal Conic. Medium: Paper map, flat and folded. Status: These maps are no longer maintained. It is planned to produce a new series of maps from the converted 42 World Aeronautical Charts (WAC) series of maps produced in 2006. These maps are only available as a print on demand product.
This map can be purchased in either flat or folded format.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.