100+ datasets found
  1. Historic contributions to global warming worldwide 1851-2023, by country or...

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Historic contributions to global warming worldwide 1851-2023, by country or region [Dataset]. https://www.statista.com/statistics/1440280/historic-contributions-to-global-warming-worldwide-by-country/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The United States contributed roughly 17 percent of global warming from 1851 to 2023. By contrast, India contributed five percent of warming during this period, despite the country having a far larger population than the United States. In total, G20 countries have contributed approximately three-quarters of global warming to date, while the least developed countries are responsible for just six percent.

  2. Dataset Global Warming 1-2100

    • zenodo.org
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Nowarski; Joseph Nowarski (2025). Dataset Global Warming 1-2100 [Dataset]. http://doi.org/10.5281/zenodo.15034765
    Explore at:
    Dataset updated
    Mar 16, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joseph Nowarski; Joseph Nowarski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 16, 2025
    Description

    This work combines global warming data from various publications and datasets, creating a new dataset covering a very long period - from the year 1 to 2100.

    The dataset created in this work separates the actual records for the 1-2024 period from the forecast for the 2020-2100 period.

    The work includes separate sets for land+ocean (GW), land only (GWL), and ocean only (GWO).

    The online dataset is available on the site nowagreen.com.

  3. Public opinion on the occurrence of global warming in the United States...

    • statista.com
    • ai-chatbox.pro
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Public opinion on the occurrence of global warming in the United States 2008-2024 [Dataset]. https://www.statista.com/statistics/663247/belief-of-global-warming-according-to-us-adults/
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 25, 2024 - May 4, 2024
    Area covered
    United States
    Description

    According to an April 2024 survey on climate change conducted in the United States, some ** percent of the respondents claimed they believed that global warming was happening. A much smaller share, ** percent, believed global warming was not happening.

  4. Climate Change Impacts on Air Quality and Human Health

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Climate Change Impacts on Air Quality and Human Health [Dataset]. https://catalog.data.gov/dataset/climate-change-impacts-on-air-quality-and-human-health
    Explore at:
    Dataset updated
    Jan 24, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This dataset contains modeled temperature, ozone, and PM2.5 data for the United States over the 21st century, using two global climate model scenarios and two emissions datasets.

  5. Agricultural statistics and climate change

    • gov.uk
    • s3.amazonaws.com
    Updated Nov 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2021). Agricultural statistics and climate change [Dataset]. https://www.gov.uk/government/statistics/agricultural-statistics-and-climate-change
    Explore at:
    Dataset updated
    Nov 5, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    No further editions of this report will be published as it has been replaced by the Agri-climate report 2021.

    This annual publication brings together existing statistics on English agriculture in order to help inform the understanding of agriculture and greenhouse gas emissions. The publication summarises available statistics that relate directly and indirectly to emissions and includes statistics on farmer attitudes to climate change mitigation and uptake of mitigation measures. It also incorporates statistics emerging from developing research and provides some international comparisons. It is updated when sufficient new information is available.

    Next update: see the statistics release calendar

    For further information please contact:
    Agri.EnvironmentStatistics@defra.gov.uk
    https://www.twitter.com/@defrastats" class="govuk-link">Twitter: @DefraStats

  6. Public opinion on global warming affecting the weather in the U.S. 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Public opinion on global warming affecting the weather in the U.S. 2024 [Dataset]. https://www.statista.com/statistics/1121252/global-warming-opinion-weather-changes/
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 25, 2024 - May 4, 2024
    Area covered
    United States
    Description

    According to an April 2024 survey on climate change conducted in the United States, some ** percent of respondents thought that global warming is affecting the weather a lot. Only eight percent of respondents claimed that global warming was affecting the weather just a little.

  7. Climate Change: Earth Surface Temperature Data

    • redivis.com
    application/jsonl +7
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2021). Climate Change: Earth Surface Temperature Data [Dataset]. https://redivis.com/datasets/1e0a-f4931vvyg
    Explore at:
    avro, csv, sas, stata, parquet, spss, arrow, application/jsonlAvailable download formats
    Dataset updated
    Feb 17, 2021
    Dataset provided by
    Redivis Inc.
    Authors
    Columbia Data Platform Demo
    Time period covered
    Nov 1, 1743 - Dec 1, 2015
    Area covered
    Earth
    Description

    Abstract

    Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data

    Documentation

    Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures

    %3C!-- --%3E

    • LandAverageTemperature: global average land temperature in celsius

    %3C!-- --%3E

    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average

    %3C!-- --%3E

    • LandMaxTemperature: global average maximum land temperature in celsius

    %3C!-- --%3E

    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature

    %3C!-- --%3E

    • LandMinTemperature: global average minimum land temperature in celsius

    %3C!-- --%3E

    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature

    %3C!-- --%3E

    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius

    %3C!-- --%3E

    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    %3C!-- --%3E

    **Other files include: **

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)

    %3C!-- --%3E

    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)

    %3C!-- --%3E

    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)

    %3C!-- --%3E

    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    %3C!-- --%3E

    The raw data comes from the Berkeley Earth data page.

  8. National contributions to climate change due to historical emissions of...

    • zenodo.org
    bin, csv, zip
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew W. Jones; Matthew W. Jones; Glen P. Peters; Glen P. Peters; Thomas Gasser; Thomas Gasser; Robbie M. Andrew; Robbie M. Andrew; Clemens Schwingshackl; Clemens Schwingshackl; Johannes Gütschow; Johannes Gütschow; Richard A. Houghton; Richard A. Houghton; Pierre Friedlingstein; Pierre Friedlingstein; Julia Pongratz; Julia Pongratz; Corinne Le Quéré; Corinne Le Quéré (2024). National contributions to climate change due to historical emissions of carbon dioxide, methane and nitrous oxide [Dataset]. http://doi.org/10.5281/zenodo.14054503
    Explore at:
    csv, bin, zipAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Matthew W. Jones; Matthew W. Jones; Glen P. Peters; Glen P. Peters; Thomas Gasser; Thomas Gasser; Robbie M. Andrew; Robbie M. Andrew; Clemens Schwingshackl; Clemens Schwingshackl; Johannes Gütschow; Johannes Gütschow; Richard A. Houghton; Richard A. Houghton; Pierre Friedlingstein; Pierre Friedlingstein; Julia Pongratz; Julia Pongratz; Corinne Le Quéré; Corinne Le Quéré
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 13, 2024
    Description

    A complete description of the dataset is given by Jones et al. (2023). Key information is provided below.

    Background

    A dataset describing the global warming response to national emissions CO2, CH4 and N2O from fossil and land use sources during 1851-2021.

    National CO2 emissions data are collated from the Global Carbon Project (Andrew and Peters, 2024; Friedlingstein et al., 2024).

    National CH4 and N2O emissions data are collated from PRIMAP-hist (HISTTP) (Gütschow et al., 2024).

    We construct a time series of cumulative CO2-equivalent emissions for each country, gas, and emissions source (fossil or land use). Emissions of CH4 and N2O emissions are related to cumulative CO2-equivalent emissions using the Global Warming Potential (GWP*) approach, with best-estimates of the coefficients taken from the IPCC AR6 (Forster et al., 2021).

    Warming in response to cumulative CO2-equivalent emissions is estimated using the transient climate response to cumulative carbon emissions (TCRE) approach, with best-estimate value of TCRE taken from the IPCC AR6 (Forster et al., 2021, Canadell et al., 2021). 'Warming' is specifically the change in global mean surface temperature (GMST).

    The data files provide emissions, cumulative emissions and the GMST response by country, gas (CO2, CH4, N2O or 3-GHG total) and source (fossil emissions, land use emissions or the total).

    Data records: overview

    The data records include three comma separated values (.csv) files as described below.

    All files are in ‘long’ format with one value provided in the Data column for each combination of the categorical variables Year, Country Name, Country ISO3 code, Gas, and Component columns.

    Component specifies fossil emissions, LULUCF emissions or total emissions of the gas.

    Gas specifies CO2, CH4, N2O or the three-gas total (labelled 3-GHG).

    Country ISO3 codes are specifically the unique ISO 3166-1 alpha-3 codes of each country.

    Data records: specifics

    Data are provided relative to 2 reference years (denoted ref_year below): 1850 and 1991. 1850 is a mutual first year of data spanning all input datasets. 1991 is relevant because the United Nations Framework Convention on Climate Change was operationalised in 1992.

    EMISSIONS_ANNUAL_{ref_year-20}-2023.csv: Data includes annual emissions of CO2 (Pg CO2 year-1), CH4 (Tg CH4 year-1) and N2O (Tg N2O year-1) during the period ref_year-20 to 2023. The Data column provides values for every combination of the categorical variables. Data are provided from ref_year-20 because these data are required to calculate GWP* for CH4.

    EMISSIONS_CUMULATIVE_CO2e100_{ref_year+1}-2023.csv: Data includes the cumulative CO2 equivalent emissions in units Pg CO2-e100 during the period ref_year+1 to 2023 (i.e. since the reference year). The Data column provides values for every combination of the categorical variables.

    GMST_response_{ref_year+1}-2023.csv: Data includes the change in global mean surface temperature (GMST) due to emissions of the three gases in units °C during the period ref_year+1 to 2023 (i.e. since the reference year). The Data column provides values for every combination of the categorical variables.

    Accompanying Code

    Code is available at: https://github.com/jonesmattw/National_Warming_Contributions .

    The code requires Input.zip to run (see README at the GitHub link).

    Further info: Country Groupings

    We also provide estimates of the contributions of various country groupings as defined by the UNFCCC:

    • Annex I countries (number of countries, n = 42)
    • Annex II countries (n = 23)
    • economies in transition (EITs; n = 15)
    • the least developed countries (LDCs; n = 47)
    • the like-minded developing countries (LMDC; n = 24).

    And other country groupings:

    • the organisation for economic co-operation and development (OECD; n = 38)
    • the European Union (EU27 post-Brexit)
    • the Brazil, South Africa, India and China (BASIC) group.

    See COUNTRY_GROUPINGS.xlsx for the lists of countries in each group.

  9. d

    Data from: A variety-specific analysis of climate change effects on...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: A variety-specific analysis of climate change effects on California winegrapes [Dataset]. https://catalog.data.gov/dataset/data-from-a-variety-specific-analysis-of-climate-change-effects-on-california-winegrapes
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Area covered
    California
    Description

    This folder, titled "Data," contains the MATLAB code, final products, tables, and figures used in Parker, L.E., Zhang, N., Abatzoglou, J.T. et al. A variety-specific analysis of climate change effects on California winegrapes. Int J Biometeorol 68, 1559–1571 (2024). https://doi.org/10.1007/s00484-024-02684-8 Data Collection: Climatological data (daily maximum and minimum temperatures, precipitation, and reference evapotranspiration) were obtained from the gridMET dataset for the contemporary period (1991-2020) and from 20 global climate models (GCMs) for the mid-21st century (2040-2069) under RCP 4.5.Phenology Modeling: Variety-specific phenology models were developed using published climatic thresholds to assess chill accumulation, budburst, flowering, veraison, and maturity stages for the six winegrape varieties.Agroclimatic Metrics: Fourteen viticulturally important agroclimatic metrics were calculated, including Growing Degree Days (GDD), Cold Hardiness, Chilling Degree Days (CDD), Frost Damage Days (FDD), and others.Analysis Tools: MATLAB was used for data processing, analysis, and visualization. The MATLAB code provided in this dataset includes scripts for analyzing climate data, running phenology models, and generating visualizations.MATLAB Code: Scripts and functions used for data analysis and modeling.Processed Data: Results from phenology and agroclimatic analyses, including the projected changes in phenological stages and climate metrics for the selected varieties and AVAs.Tables: Detailed results of phenological changes and climate metrics, presented in a clear and structured format.Figures: Visual representations of the data and results, including charts and maps illustrating the impacts of climate change on winegrape development stages and agroclimatic conditions. Research Description: This study investigates the impacts of climate change on the phenology and agroclimatic metrics of six winegrape varieties (Cabernet Sauvignon, Chardonnay, Pinot Noir, Zinfandel, Pinot Gris, Sauvignon Blanc) across multiple California American Viticultural Areas (AVAs). Using climatological data and phenology models, the research quantifies changes in key development stages and viticulturally important climate metrics for the mid-21st century.

  10. Temperature change

    • kaggle.com
    Updated Nov 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sevgi SY (2024). Temperature change [Dataset]. https://www.kaggle.com/sevgisarac/temperature-change/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 2, 2024
    Dataset provided by
    Kaggle
    Authors
    Sevgi SY
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Context

    Data description

    The FAOSTAT Temperature Change domain disseminates statistics of mean surface temperature change by country, with annual updates. The current dissemination covers the period 1961–2023. Statistics are available for monthly, seasonal and annual mean temperature anomalies, i.e., temperature change with respect to a baseline climatology, corresponding to the period 1951–1980. The standard deviation of the temperature change of the baseline methodology is also available. Data are based on the publicly available GISTEMP data, the Global Surface Temperature Change data distributed by the National Aeronautics and Space Administration Goddard Institute for Space Studies (NASA-GISS).

    Content

    Statistical concepts and definitions

    Statistical standards: Data in the Temperature Change domain are not an explicit SEEA variable. Nonetheless, country and regional calculations employ a definition of “Land area” consistent with SEEA Land Use definitions, specifically SEEA CF Table 5.11 “Land Use Classification” and SEEA AFF Table 4.8, “Physical asset account for land use.” The Temperature Change domain of the FAOSTAT Agri-Environmental Indicators section is compliant with the Framework for the Development of Environmental Statistics (FDES 2013), contributing to FDES Component 1: Environmental Conditions and Quality, Sub-component 1.1: Physical Conditions, Topic 1.1.1: Atmosphere, climate and weather, Core set/ Tier 1 statistics a.1.

    Statistical unit: Countries and Territories.

    Statistical population: Countries and Territories.

    Reference area: Area of all the Countries and Territories of the world. In 2019: 190 countries and 37 other territorial entities.

    Code - reference area: FAOSTAT, M49, ISO2 and ISO3 (http://www.fao.org/faostat/en/#definitions). FAO Global Administrative Unit Layer (GAUL National level – reference year 2014. FAO Geospatial data repository GeoNetwork. Permanent address: http://www.fao.org:80/geonetwork?uuid=f7e7adb0-88fd-11da-a88f-000d939bc5d8.

    Code - Number of countries/areas covered: In 2019: 190 countries and 37 other territorial entities.

    Time coverage: 1961-2023

    Periodicity: Monthly, Seasonal, Yearly

    Base period: 1951-1980

    Unit of Measure: Celsius degrees °C

    Reference period: Months, Seasons, Meteorological year

    Acknowledgements

    Documentation on methodology: Details on the methodology can be accessed at the Related Documents section of the Temperature Change (ET) domain in the Agri-Environmental Indicators section of FAOSTAT.

    Quality documentation: For more information on the methods, coverage, accuracy and limitations of the Temperature Change dataset please refer to the NASA GISTEMP website: https://data.giss.nasa.gov/gistemp/

                                                                              Source: http://www.fao.org/faostat/en/#data/ET/metadata
    

    Inspiration

    Climate change is one of the important issues that face the world in this technological era. The best proof of this situation is the historical temperature change. You can investigate if any hope there is for stopping global warming :)

    • Can you find any correlation between temperature change and any other variable? (Using ISO3 codes for merging any other countries' data sets possible.)

    • Prediction of temperature change: there is also an overall world temperature change in the country list as 'World'.

  11. SGMA Climate Change Resources

    • data.ca.gov
    • data.cnra.ca.gov
    • +3more
    csv, pdf, xlsx, zip
    Updated Oct 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2023). SGMA Climate Change Resources [Dataset]. https://data.ca.gov/dataset/sgma-climate-change-resources
    Explore at:
    zip, pdf, xlsx, csvAvailable download formats
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    This dataset includes processed climate change datasets related to climatology, hydrology, and water operations. The climatological data provided are change factors for precipitation and reference evapotranspiration gridded over the entire State. The hydrological data provided are projected stream inflows for major streams in the Central Valley, and streamflow change factors for areas outside of the Central Valley and smaller ungaged watersheds within the Central Valley. The water operations data provided are Central Valley reservoir outflows, diversions, and State Water Project (SWP) and Central Valley Project (CVP) water deliveries and select streamflow data. Most of the Central Valley inflows and all of the water operations data were simulated using the CalSim II model and produced for all projections.

    These data were originally developed for the California Water Commission’s Water Storage Investment Program (WSIP). The WSIP data used as the basis for these climate change resources along with the technical reference document are located here: https://data.cnra.ca.gov/dataset/climate-change-projections-wsip-2030-2070. Additional processing steps were performed to improve user experience, ease of use for GSP development, and for Sustainable Groundwater Management Act (SGMA) implementation. Furthermore, the data, tools, and guidance may be useful for purposes other than sustainable groundwater management under SGMA.

    Data are provided for projected climate conditions centered around 2030 and 2070. The climate projections are provided for these two future climate periods, and include one scenario for 2030 and three scenarios for 2070: a 2030 central tendency, a 2070 central tendency, and two 2070 extreme scenarios (i.e., one drier with extreme warming and one wetter with moderate warming). The climate scenario development process represents a climate period analysis where historical interannual variability from January 1915 through December 2011 is preserved while the magnitude of events may be increased or decreased based on projected changes in precipitation and air temperature from general circulation models.

    2070 Extreme Scenarios Update, September 2020

    DWR has collaborated with Lawrence Berkeley National Laboratory to improve the quality of the 2070 extreme scenarios. The 2070 extreme scenario update utilizes an improved climate period analysis method known as "quantile delta mapping" to better capture the GCM-projected change in temperature and precipitation. A technical note on the background and results of this process is provided here: https://data.cnra.ca.gov/dataset/extreme-climate-change-scenarios-for-water-supply-planning/resource/f2e1c61a-4946-4863-825f-e6d516b433ed.

    Note: the original version of the 2070 extreme scenarios can be accessed in the archive posted here: https://data.cnra.ca.gov/dataset/sgma-climate-change-resources/resource/51b6ee27-4f78-4226-8429-86c3a85046f4

  12. D

    Innovative Program of Climate Change Projection for the 21st Century...

    • search.diasjp.net
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michio KAWAMIYA, Innovative Program of Climate Change Projection for the 21st Century (KAKUSHIN program) CMIP5 simulation data by Global Climate Model MIROC4h [Dataset]. https://search.diasjp.net/en/dataset/CMIP5_MIROC4h
    Explore at:
    Dataset provided by
    JAMSTEC
    Authors
    Michio KAWAMIYA
    Description

    As part of this national strategy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) had launched a 5-year (FY2007 - 2011) initiative called the Innovative Program of Climate Change Projection for the 21st Century (KAKUSHIN Program), using the Earth Simulator (ES) to address emerging research challenges, such as those derived from the outcomes of the MEXT's Kyosei Project (FY2002 - 2006), that had made substantial contributions to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The KAKUSHIN Program was expected to further contribute to the Fifth Assessment Report (AR5).

    The research items include the advancement and forecasting of global warming models, the quantification and reduction of model uncertainty, and the evaluation of the impacts of natural disasters based on forecast information. Much of the data submitted to CMIP5 from Japan were generated under this KAKUSHIN program using the global climate models and the Earth system models developed in Japan. This dataset is the result of using the Global Climate Model MIROC4h.

    All CMIP5 data are collected, managed, and published by the Earth System Grid Federation (ESGF), and DIAS serves as an ESGF node. All public datasets, including this dataset, are available from ESGF. For information on how to use these datasets, including this dataset, see "CMIP5 Data - Getting Started" (URL is available in the online information below). Please note that an ESGF account is required to download the CMIP5 data.

    Because the terms of use for CMIP5 data are different from CMIP6 in many respects, please check the following Terms of Use carefully: https://pcmdi.llnl.gov/mips/cmip5/terms-of-use.html Currently, all CMIP5 data, including this dataset, is classified as "unrestricted" within it.

  13. Underlying data for "2023 record temperatures consistent with steady global...

    • figshare.com
    zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bjorn Samset (2024). Underlying data for "2023 record temperatures consistent with steady global warming and sea surface temperature variability" (Samset et al. 2024; https://doi.org/10.1038/s43247-024-01637-8) [Dataset]. http://doi.org/10.6084/m9.figshare.25721373.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 27, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Bjorn Samset
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains data used in figures in Samset et al. 2024, Communications Earth & Environmenthttps://www.nature.com/articles/s43247-024-01637-8https://doi.org/10.1038/s43247-024-01637-8Obs_GMST_GreensFunctionFiltered.zip:Global mean surface temperature data series for four observational reconstructions.Key fields:- tas_aa: Global mean surface temperature anomaly, relative to 1850-1899 or 1880-1899, depending on the coverage.- tas_fbr_aa: As tas_aa, but with SST pattern filering applied, as documented in the publicationSimilarly formatted CMIP6 data are available in a separate archive:Underlying data for "Steady global surface warming from 1973 to 2022 but increased warming rate after 1990" (10.1038/s43247-023-01061-4)

  14. D

    database for Policy Decision making for Future climate change (atmospheric...

    • search.diasjp.net
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Osamu Arakawa, database for Policy Decision making for Future climate change (atmospheric GCM over the Globe) [Dataset]. https://search.diasjp.net/en/dataset/d4PDF_GCM
    Explore at:
    Dataset provided by
    Program for Risk Information on Climate Change
    Authors
    Osamu Arakawa
    Area covered
    Earth
    Description

    (1) This is the dataset simulated by high resolution atmospheric model of which horizontal resolution is 60km-mesh over the globe (GCM), and 20km over Japan and surroundings (RCM), respetively. The climate of the latter half of the 20th century is simulated for 6000 years (3000 years for the Japan area), and the climates 1.5 K (*2), 2 K (*1) and 4 K warmer than the pre-industrial climate are simulated for 1566, 3240 and 5400 years, respectivley, to see the effect of global warming. (2) Huge number of ensembles enable not only with statistics but also with high accuracy to estimate the future change of extreme events such as typoons and localized torrential downpours. In addtion, this dataset provides the highly reliable information on the impact of natural disasters due to climate change on future societies. (3) This dataset provides the climate projections which adaptations against global warming are based on in various fields, for example, disaster prevention, urban planning, environmetal protection, and so on. It would realize the global warming adaptations consistent not only among issues but also among regions. (4) Total size of this dataset is 3 PB (3 x the 15th power of 10 bytes).

    (*1) Datasets of the climates 2K warmer than the pre-industorial climate is available on 10th August, 2018. (*2) Datasets of the climates 1.5K warmer than the pre-industorial climate is available on 8th February, 2022.

  15. n

    Data for: “Global warming” vs. “Climate change”: A replication on the...

    • narcis.nl
    • data.mendeley.com
    Updated Oct 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soutter, A (via Mendeley Data) (2020). Data for: “Global warming” vs. “Climate change”: A replication on the relationship between political ideology, question wording, and environmental belief [Dataset]. http://doi.org/10.17632/w5t358925f.1
    Explore at:
    Dataset updated
    Oct 22, 2020
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Soutter, A (via Mendeley Data)
    Description

    This data-set was collected to replicate the findings of Schuldt et al. (2011). It contains data from the UK, USA, and Australia collected between 2nd of January 2018 and the 29th of April 2019. It measures individuals political party, and belief in environmental phenomena.

  16. Global Surface Temperature Changes over Land Dataset

    • zenodo.org
    • data.niaid.nih.gov
    Updated Mar 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Nowarski; Joseph Nowarski (2022). Global Surface Temperature Changes over Land Dataset [Dataset]. http://doi.org/10.5281/zenodo.6373255
    Explore at:
    Dataset updated
    Mar 28, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joseph Nowarski; Joseph Nowarski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Annual averages of global surface temperature changes for land only based on Berkeley Earth monthly dataset above the 1951-1980 baseline. The dataset is from 1750 in °C, 3 decimal places.

  17. m

    The Climate Change Twitter Dataset

    • data.mendeley.com
    • kaggle.com
    Updated May 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitrios Effrosynidis (2022). The Climate Change Twitter Dataset [Dataset]. http://doi.org/10.17632/mw8yd7z9wc.2
    Explore at:
    Dataset updated
    May 19, 2022
    Authors
    Dimitrios Effrosynidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    If you use the dataset, cite the paper: https://doi.org/10.1016/j.eswa.2022.117541

    The most comprehensive dataset to date regarding climate change and human opinions via Twitter. It has the heftiest temporal coverage, spanning over 13 years, includes over 15 million tweets spatially distributed across the world, and provides the geolocation of most tweets. Seven dimensions of information are tied to each tweet, namely geolocation, user gender, climate change stance and sentiment, aggressiveness, deviations from historic temperature, and topic modeling, while accompanied by environmental disaster events information. These dimensions were produced by testing and evaluating a plethora of state-of-the-art machine learning algorithms and methods, both supervised and unsupervised, including BERT, RNN, LSTM, CNN, SVM, Naive Bayes, VADER, Textblob, Flair, and LDA.

    The following columns are in the dataset:

    ➡ created_at: The timestamp of the tweet. ➡ id: The unique id of the tweet. ➡ lng: The longitude the tweet was written. ➡ lat: The latitude the tweet was written. ➡ topic: Categorization of the tweet in one of ten topics namely, seriousness of gas emissions, importance of human intervention, global stance, significance of pollution awareness events, weather extremes, impact of resource overconsumption, Donald Trump versus science, ideological positions on global warming, politics, and undefined. ➡ sentiment: A score on a continuous scale. This scale ranges from -1 to 1 with values closer to 1 being translated to positive sentiment, values closer to -1 representing a negative sentiment while values close to 0 depicting no sentiment or being neutral. ➡ stance: That is if the tweet supports the belief of man-made climate change (believer), if the tweet does not believe in man-made climate change (denier), and if the tweet neither supports nor refuses the belief of man-made climate change (neutral). ➡ gender: Whether the user that made the tweet is male, female, or undefined. ➡ temperature_avg: The temperature deviation in Celsius and relative to the January 1951-December 1980 average at the time and place the tweet was written. ➡ aggressiveness: That is if the tweet contains aggressive language or not.

    Since Twitter forbids making public the text of the tweets, in order to retrieve it you need to do a process called hydrating. Tools such as Twarc or Hydrator can be used to hydrate tweets.

  18. U.S. adults on trustworthy sources for global warming information 2021-2022

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. adults on trustworthy sources for global warming information 2021-2022 [Dataset]. https://www.statista.com/statistics/534477/trustworthy-sources-for-climate-change-info-among-us-adults/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 28, 2022 - Mar 12, 2022
    Area covered
    United States
    Description

    The majority of U.S. adults believe that non-government scientists and educators are the most trustworthy sources for information about climate change, with **** percent of respondents in 2022. By comparison, nearly ** percent of respondents said they considered environmental groups trustworthy, and some ** percent said they considered college professors/educators trustworthy.

  19. Data from: Global Temperature Anomalies

    • kaggle.com
    Updated Nov 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Global Temperature Anomalies [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-temperature-anomalies-1951-1980
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 25, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Global Temperature Anomalies

    The North and South Hemispheres

    By Andy Kriebel [source]

    About this dataset

    This dataset contains global temperature anomalies. The data represents deviations from the corresponding means.The data was collected by the NASA Goddard Institute for Space Studies and provides a snapshot of our changing climate

    How to use the dataset

    Research Ideas

    • To study the effect of global warming on different parts of the world.
    • To study the effect of global warming on different seasons.
    • To study the effect of global warming on different years

    Acknowledgements

    Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Global Temperature Anomalies.csv | Column name | Description | |:---------------|:-----------------------------------------------------------------------------------| | Hemisphere | The hemisphere the data is from. (String) | | Year | The year the data is from. (Integer) | | Jan | The temperature anomaly in January. (Float) | | Feb | The temperature anomaly in February. (Float) | | Mar | The temperature anomaly in March. (Float) | | Apr | The temperature anomaly in April. (Float) | | May | The temperature anomaly in May. (Float) | | Jun | The temperature anomaly in June. (Float) | | Jul | The temperature anomaly in July. (Float) | | Aug | The temperature anomaly in August. (Float) | | Sep | The temperature anomaly in September. (Float) | | Oct | The temperature anomaly in October. (Float) | | Nov | The temperature anomaly in November. (Float) | | Dec | The temperature anomaly in December. (Float) | | J-D | The temperature anomaly for the months of January, February and March. (Float) | | D-N | The temperature anomaly for the months of April, May and June. (Float) | | DJF | The temperature anomaly for the months of December, January and February. (Float) | | MAM | The temperature anomaly for the months of March, April and May. (Float) | | JJA | The temperature anomaly for the months of June, July and August. (Float) | | SON | The temperature anomaly for the months of September, October and November. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit Andy Kriebel.

  20. U

    Data compilation of soil respiration, moisture, and temperature measurements...

    • data.usgs.gov
    • s.cnmilf.com
    • +4more
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pamela Templer; Jianwu Tang; Kevin Kroeger; Chrisopher Bamminger; Scott Bridgham; Gaius Shaver; Bridget Emmett; Joanna Carey; Mary Heskel; Edward Rastetter; Anne Panetta; Lorien Reynolds; John Harte; William Eddy; Klaus Larsen; Yiqi Luo; Xin Wang; Brian Enquist; Scott Collins; Christian Poll; Serita Frey; Amanda Henderson; Vidya Suseela; Laurel Pfeifer-Meister; Josep Peñuelas; Aaron Strong; Megan Machmuller; Steven Allison; Jeffrey Dukes; Sabine Reinsch; Thomas Crowther; Andy Reinmann; Marc Estiarte; Bart Johnson; Albert Tietema; Jacqueline Mohan; Peter Reich; Lifen Jiang; Jerry Melillo; Sven Marhan; Giovanbattista Dato; Andrew Burton; Inger Schmidt (2025). Data compilation of soil respiration, moisture, and temperature measurements from global warming experiments from 1994-2014 [Dataset]. http://doi.org/10.5066/F7MK6B1X
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Pamela Templer; Jianwu Tang; Kevin Kroeger; Chrisopher Bamminger; Scott Bridgham; Gaius Shaver; Bridget Emmett; Joanna Carey; Mary Heskel; Edward Rastetter; Anne Panetta; Lorien Reynolds; John Harte; William Eddy; Klaus Larsen; Yiqi Luo; Xin Wang; Brian Enquist; Scott Collins; Christian Poll; Serita Frey; Amanda Henderson; Vidya Suseela; Laurel Pfeifer-Meister; Josep Peñuelas; Aaron Strong; Megan Machmuller; Steven Allison; Jeffrey Dukes; Sabine Reinsch; Thomas Crowther; Andy Reinmann; Marc Estiarte; Bart Johnson; Albert Tietema; Jacqueline Mohan; Peter Reich; Lifen Jiang; Jerry Melillo; Sven Marhan; Giovanbattista Dato; Andrew Burton; Inger Schmidt
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1994 - 2014
    Description

    This dataset is the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3800 observations representing 27 temperature manipulation studies, spanning nine biomes and nearly two decades of warming experiments. Data for this study were obtained from a combination of unpublished data and published literature values. We find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental warming. We also note a universal decline in the temperature sensitivity of respiration at soil temperatures >25°C. This dataset includes 3817 observations, from control (n=1812), first (i.e., lowest or sole) level warming (n=1812), second (higher) level warming (n=179, four studies), and third-level warming (n=14, one study). Experiment locations ranged from 33.5 to 68.4 degrees N latitude and the duration of warming at experiments ranged from <1 to 22 years (average 5.1 y ...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Historic contributions to global warming worldwide 1851-2023, by country or region [Dataset]. https://www.statista.com/statistics/1440280/historic-contributions-to-global-warming-worldwide-by-country/
Organization logo

Historic contributions to global warming worldwide 1851-2023, by country or region

Explore at:
Dataset updated
Feb 5, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The United States contributed roughly 17 percent of global warming from 1851 to 2023. By contrast, India contributed five percent of warming during this period, despite the country having a far larger population than the United States. In total, G20 countries have contributed approximately three-quarters of global warming to date, while the least developed countries are responsible for just six percent.

Search
Clear search
Close search
Google apps
Main menu