56 datasets found
  1. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Dec 2, 2025
    Area covered
    World
    Description

    Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.

  2. Gold Data to Predict the Stock Market

    • kaggle.com
    zip
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angel Varela (2025). Gold Data to Predict the Stock Market [Dataset]. https://www.kaggle.com/datasets/angelvarela/gold-data-to-predict-the-stock-market
    Explore at:
    zip(49607779 bytes)Available download formats
    Dataset updated
    Apr 17, 2025
    Authors
    Angel Varela
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset can be used to predict the stock market. The data is extracted from MT5 terminal integrated in python.

    The datasets include the minute by minute fluctuations of Gold and Silver prices over from 1st of January 2023 to 17th April 2025. The data can be used to train models for seasonality or a minute-by-minute approach.

    The data has 7 columns:

    • Time: The minute in which the event or movement occurred (Can be converted to Datetype with pd.to_datatime)
    • Open Price
    • High Price
    • Low Price
    • Close Price (The Feature to Predict if desired)
    • Tick Volume: The Volume at the in which the event or movement occurred
    • EMA: Exponential Moving Average (Technical Estimator for Risk management in the predictions and overall better performance)
    • OBV: On-Balance Volume (Technical Estimator for Risk management in the predictions and overall better performance)

    Two datasets are used;

    Achilles Data Gold-Silver: with 1,416,340 rows to predict Gold, Silver and other Metals. Achilles Data Gold: with 708,264 rows to predict Gold, Silver and other Metals.

    You may find the paper of our implementation here: https://doi.org/10.48550/arXiv.2410.21291

  3. C

    China CN: Warehouse Stock: Shanghai Future Exchange: Gold

    • ceicdata.com
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). China CN: Warehouse Stock: Shanghai Future Exchange: Gold [Dataset]. https://www.ceicdata.com/en/china/shanghai-futures-exchange-commodity-futures-stock/cn-warehouse-stock-shanghai-future-exchange-gold
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 17, 2025 - Dec 2, 2025
    Area covered
    China
    Variables measured
    Industrial Sales / Turnover
    Description

    China Warehouse Stock: Shanghai Future Exchange: Gold data was reported at 90.873 Ton in 03 Dec 2025. This stayed constant from the previous number of 90.873 Ton for 02 Dec 2025. China Warehouse Stock: Shanghai Future Exchange: Gold data is updated daily, averaging 1.182 Ton from Oct 2008 (Median) to 03 Dec 2025, with 4173 observations. The data reached an all-time high of 90.873 Ton in 03 Dec 2025 and a record low of 0.015 Ton in 13 Dec 2010. China Warehouse Stock: Shanghai Future Exchange: Gold data remains active status in CEIC and is reported by Shanghai Futures Exchange. The data is categorized under China Premium Database’s Financial Market – Table CN.ZB: Shanghai Futures Exchange: Commodity Futures: Stock.

  4. Philadelphia Gold and Silver Index: The Future of Precious Metals?...

    • kappasignal.com
    Updated Sep 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Philadelphia Gold and Silver Index: The Future of Precious Metals? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/philadelphia-gold-and-silver-index_29.html
    Explore at:
    Dataset updated
    Sep 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Philadelphia Gold and Silver Index: The Future of Precious Metals?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. Average annual return of gold and other assets worldwide, 1971-2025

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual return of gold and other assets worldwide, 1971-2025 [Dataset]. https://www.statista.com/statistics/1061434/gold-other-assets-average-annual-returns-global/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.

  6. h

    Gold (spot) (GC.1) AI Prediction Dataset

    • hallucinationyield.com
    json
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hallucination Yield (2025). Gold (spot) (GC.1) AI Prediction Dataset [Dataset]. https://www.hallucinationyield.com/commodity/GC.1/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    Hallucination Yield
    Time period covered
    Jan 1, 2025 - Present
    Variables measured
    Bullishness scores, 1-year return predictions, 5-year return predictions, 3-month return predictions, AI model confidence levels
    Description

    Historical AI model predictions and analysis for Gold (spot) stock across multiple timeframes and confidence levels

  7. m

    Zhongjin Gold Corp Ltd - Common-Stock-Shares-Outstanding

    • macro-rankings.com
    csv, excel
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Zhongjin Gold Corp Ltd - Common-Stock-Shares-Outstanding [Dataset]. https://www.macro-rankings.com/Markets/Stocks?Entity=600489.SHG&Item=Common-Stock-Shares-Outstanding
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    china
    Description

    Common-Stock-Shares-Outstanding Time Series for Zhongjin Gold Corp Ltd. Zhongjin Gold Corp.,Ltd, together with its subsidiaries, engages in the mining, smelting, and sale of non-ferrous metals in China. The company's products include gold, including gold concentrates, gold alloys, and standard gold; electrolytic and cathode copper, silver, sulfuric acid, tellurium, platinum, selenium, ammonium perrhenate, molybdenum, and iron ore concentrates; and mineral powder. It also engages in investment and management of geological exploration, mining, and smelting of gold and nonferrous metals; processing and selling of by-products; storage and sales of raw materials, fuels, and equipment; research and development of gold production technology; consulting services; production, processing, and wholesale of high-purity gold products; import and export; and commodity exhibitions. Zhongjin Gold Corp.,Ltd was founded in 2000 and is based in Beijing, China.

  8. Gold Loan Dataset

    • kaggle.com
    zip
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bittu Panchal (2022). Gold Loan Dataset [Dataset]. https://www.kaggle.com/datasets/bittupanchal/gold-loan-dataset
    Explore at:
    zip(1120054 bytes)Available download formats
    Dataset updated
    Nov 17, 2022
    Authors
    Bittu Panchal
    Description

    Gold is one of the critical commodities that is used as a barometer of economic activity prevailing in the globalized world. The price of the gold is dependent on many economic indicators and is complex to understand the dynamics of its price discovery. To predict the prices of gold is paramount for any business involved in global trade and in turn gives indications of the overall financial stability of the global business environment. In this project, a system which is based on machine learning algorithms to predict the gold prices based on the historical data related to other closely related commodities and stock market indicators. The system is based on Random Forest Regression algorithm which is used to train on historical commodity prices such as Crude oil, Silver Price, Stock Price which are key indicators of the global financial markets and forms the core decision logic for future predictions. The results prove that the Random Forest Regressor Machine learning Algorithm performs better than the other methods with a forecasting accuracy of 98%.

  9. Data.xlsx

    • figshare.com
    xlsx
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Toan Luu Duc Huynh; Muhammad Ali Nasir; Yosra Ghabri (2021). Data.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.14380709.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 7, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Toan Luu Duc Huynh; Muhammad Ali Nasir; Yosra Ghabri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the context of the COVID-19’s outbreak and its implications for the financial sector, this study analyses the aspect of hedging and safe-haven under pandemic. Drawing on the daily data from 02 August 2019 to 17 April 2020, our key findings suggest that the contagious effects in financial assets’ returns significantly increased under COVID-19, indicating exacerbated market risk. The connectedness spiked in the middle of March, consistent with lockdown timings in major economies. The effect became severe with the WHO’s declaration of a pandemic, confirming negative news effects. The return connectedness suggests that COVID-19 has been a catalyst of contagious effects on the financial markets. The crude oil and the government bonds are however not as much affected by the spillovers as their endogenous innovation. In term of spillovers, we do find the safe-haven function of Gold and Bitcoin. Comparatively, the safe-haven effectiveness of Bitcoin is unstable over the pandemic. Whereas, GOLD is the most promising hedge and safe-haven asset, as it remains robust during the current crisis of COVID-19 and thus exhibits superiority over Bitcoin and Tether. Our findings are useful for investors, portfolio managers and policymakers interested in spillovers and safe havens during the current pandemic.

  10. Descriptive statistics of illiquidity and volatility.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). Descriptive statistics of illiquidity and volatility. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table presents the mean, standard deviation (SD) for the illiquidity and volatility of each commodity market as well as the stock market. Illiquidity is measured using the Amihud measure for each market. The sample runs from January 1, 2010 to March 22, 2021.

  11. Monthly prices for gold worldwide 2011-2025

    • statista.com
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Monthly prices for gold worldwide 2011-2025 [Dataset]. https://www.statista.com/statistics/274029/price-for-an-ounce-of-fine-gold-in-london-morning-fixing/
    Explore at:
    Dataset updated
    Jan 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2011 - May 2025
    Area covered
    United Kingdom (Great Britain)
    Description

    As of May 2025, the London (morning fixing) price of an ounce of gold cost an average of ******** U.S. dollars, a slight increase compared to the average monthly morning fixing price of ******** U.S. dollars per ounce in the previous month.

    London fixing gold price In January 2020, the average price for an ounce of fine gold was ******** U.S. dollars. It increased to ******** U.S. dollars as of April 2022. Although the monthly price for fine gold fluctuates, the average annual price of fine gold is gradually increasing. In 2001, the price for one ounce of gold was *** U.S. dollars, and by 2012 the price had risen to some ***** U.S. dollars. By 2024, the annual average gold price was nearly ***** dollars per ounce. In that year, global gold demand reached ******* metric tons worldwide. Price determinants of fine gold Fine gold is considered to be almost pure gold, where the value of the metal depends on the percentage of fineness. Twenty-four-carat gold is considered fine gold (from 99.9 percent gold by mass and higher). The London Gold Fix acts as a benchmark for the price of gold. The price of gold is set by the members of the London Gold Market Fixing Ltd undertaken by Barclays and its other members. The price is determined twice per business day at 10:30 am and 3:00 pm based on the London bullion market to settle contracts within the bullion market. The price is based on the equilibrium point between supply and demand agreed upon by participating banks. Gold prices must remain flexible, and gold fixing provides an instantaneous price at specified times.

  12. T

    Silver - Price Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Silver - Price Data [Dataset]. https://tradingeconomics.com/commodity/silver
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1975 - Dec 2, 2025
    Area covered
    World
    Description

    Silver fell to 57.28 USD/t.oz on December 2, 2025, down 1.22% from the previous day. Over the past month, Silver's price has risen 19.11%, and is up 84.81% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Silver - values, historical data, forecasts and news - updated on December of 2025.

  13. 2019-2024 US Stock Market Data

    • kaggle.com
    zip
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saket Kumar (2024). 2019-2024 US Stock Market Data [Dataset]. https://www.kaggle.com/datasets/saketk511/2019-2024-us-stock-market-data
    Explore at:
    zip(159095 bytes)Available download formats
    Dataset updated
    Feb 4, 2024
    Authors
    Saket Kumar
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.

    Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold

    Image attribute : Image by Freepik

  14. f

    Variance decomposition of market i illiquidity to own and other market...

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). Variance decomposition of market i illiquidity to own and other market illiquidity and volatility. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table presents the variance decompositions computed from a six-variable VAR for market i and CSI300 market. All variables are adjusted for deterministic time series variations. Illiquidity is measured using the Amihud measure for each stock and is averaged across stocks for each market. We choose the number of lags based on the SC and HQ criteria. The sample runs from January 1, 2010 to March 22, 2021.

  15. Kendall’s tau covariance analysis of the illiquidity measurement.

    • figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). Kendall’s tau covariance analysis of the illiquidity measurement. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The table presents the correlation matrix of the time-series of illiquidity measures. Illiquidity is measured using the Amihud measure for each market. The sample runs from January 1, 2010 to March 22, 2021.

  16. f

    The correlation matrix.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). The correlation matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The table presents the correlation among illiquidity series and volatility series for all financial markets. The sample runs from January 1, 2010 to March 22, 2021.

  17. Unit root test of illiquidity and volatility.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). Unit root test of illiquidity and volatility. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The table presents the individual unit root test results for the illiquidity and volatility of each market. Illiquidity is measured using the Amihud measure for each financial market. The sample runs from January 1, 2010 to March 22, 2021.

  18. Year-end price of gold per troy ounce 1990-2025

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Year-end price of gold per troy ounce 1990-2025 [Dataset]. https://www.statista.com/statistics/274001/gold-price-per-ounce-since-1978/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The price of gold per troy ounce increased considerably between 1990 and 2025, despite some fluctuations. A troy ounce is the international common unit of weight used for precious metals and is approximately **** grams. At the end of 2024, a troy ounce of gold cost ******* U.S. dollars. As of * June 2025, it increased considerably to ******** U.S. dollars. Price of – additional information In 2000, the price of gold was at its lowest since 1990, with a troy ounce of gold costing ***** U.S. dollars in that year. Since then, gold prices have been rising and after the economic crisis of 2008, the price of gold rose at higher rates than ever before as the market began to see gold as an increasingly good investment. History has shown, gold is seen as a good investment in times of uncertainty because it can or is thought to function as a good store of value against a declining currency as well as providing protection against inflation. However, unlike other commodities, once gold is mined it does not get used up like other commodities (for example, such as gasoline). So while gold may be a good investment at times, the supply demand argument does not apply to gold. Nonetheless, the demand for gold has been mostly consistent.

  19. US Stock Market and Commodities Data (2020-2024)

    • kaggle.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). US Stock Market and Commodities Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/us-stock-market-and-commodities-data-2020-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2024
    Dataset provided by
    Kaggle
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.

    Key Features and Data Structure

    The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:

    • Commodities: Prices and trading volumes for natural gas, crude oil, copper, platinum, silver, and gold.
    • Cryptocurrencies: Prices and volumes for Bitcoin and Ethereum, including detailed 5-minute interval data for Bitcoin.
    • Stock Market Indices: Data for major indices such as the S&P 500 and Nasdaq 100.
    • Individual Stocks: Prices and volumes for major companies including Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta.

    The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.

    Applications and Usability

    This dataset is highly versatile and can be utilized for various financial research purposes:

    • Market Analysis: Track the performance of key assets, compare volatility, and study correlations between different financial instruments.
    • Risk Assessment: Analyze the impact of commodity price movements on related stock prices and evaluate market risks.
    • Educational Use: Serve as a resource for teaching market trends, asset correlation, and the effects of global events on financial markets.

    The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.

    Acknowledgements:

    This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.

  20. VAR estimation results for pairs of markets: Granger causality tests.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui (2023). VAR estimation results for pairs of markets: Granger causality tests. [Dataset]. http://doi.org/10.1371/journal.pone.0259308.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shusheng Ding; Zhipan Yuan; Fan Chen; Xihan Xiong; Zheng Lu; Tianxiang Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Those two tables present results from a six-variable VAR for the cross-section of pair of markets i and j. The horizontal row represents market i, which is the dependent variable and the vertical row represents market j, which is the independent variable. The Granger causality is from market j to market i. p-Values of the null hypothesis that the column variable does not Granger cause the row variable are presented for selected markets. Illiquidity is measured using the Amihud measure for each market. All variables are adjusted for deterministic time series variations. We choose the number of lags based on the SC and HQ criteria. The sample runs from January 1, 2010 to March 22, 2021. ** denotes significance at the 5% level and *denotes significance at the 10% level.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold

Gold - Price Data

Gold - Historical Dataset (1968-01-03/2025-12-02)

Explore at:
excel, csv, json, xmlAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1968 - Dec 2, 2025
Area covered
World
Description

Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu