Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 3,350.92 USD/t.oz on July 14, 2025, down 0.18% from the previous day. Over the past month, Gold's price has fallen 0.98%, but it is still 38.32% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
This statistic depicts the average annual prices for gold from 2014 to 2024 with a forecast until 2026. In 2024, the average price for gold stood at 2,388 U.S. dollars per troy ounce, the highest value recorded throughout the period considered. In 2026, the average gold price is expected to increase, reaching 3,200 U.S. dollars per troy ounce.
https://www.procurementresource.com/privacy-policyhttps://www.procurementresource.com/privacy-policy
Get the latest insights on price movement and trend analysis of Gold in different regions across the world (Asia, Europe, North America, Latin America, and the Middle East Africa).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Ticker Description 0 GC=F Gold 1 SI=F Silver 2 CL=F Crude Oil 3 ^GSPC S&P500 4 PL=F Platinum 5 HG=F Copper 6 DX=F Dollar Index 7 ^VIX Volatility Index 8 EEM MSCI EM ETF 9 EURUSD=X Euro USD 10 ^N100 Euronext100 11 ^IXIC Nasdaq 12 ^BSESN Bse sensex 13 ^NSEI Nifty 50 14 ^DJI Dow
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
Predictions: S&P GSCI Gold index is expected to continue its upward trend in the near term, driven by safe-haven demand amid ongoing geopolitical uncertainties and concerns about global economic growth. The index may face some resistance at higher levels, but it is likely to break through and reach new highs. Risks: The main risks to the S&P GSCI Gold index's upward trend include a significant improvement in the global economic outlook, a sharp decline in geopolitical tensions, and a shift in investor sentiment towards riskier assets. A prolonged period of high inflation could also pose a risk to the index, as investors may seek alternative safe-haven assets such as bonds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the Myanmar's gold market decreased by -48.3% to $X for the first time since 2018, thus ending a two-year rising trend. Over the period under review, consumption saw a abrupt slump. Over the period under review, the market hit record highs at $X in 2015; however, from 2016 to 2021, consumption failed to regain momentum.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the global gold market decreased by -7.3% to $X for the first time since 2018, thus ending a two-year rising trend. The market value increased at an average annual rate of +3.1% from 2012 to 2021; however, the trend pattern indicated some noticeable fluctuations being recorded in certain years. Over the period under review, the global market reached the maximum level at $X in 2020, and then shrank in the following year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2021, the Pakistani gold market decreased by -4.9% to $X for the first time since 2018, thus ending a two-year rising trend. In general, the total consumption indicated a strong expansion from 2012 to 2021: its value increased at an average annual rate of +8.6% over the last nine-year period. The trend pattern, however, indicated some noticeable fluctuations being recorded throughout the analyzed period. Based on 2021 figures, consumption increased by +56.8% against 2016 indices. Gold consumption peaked at $X in 2020, and then declined modestly in the following year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Daily Gold Price (2015-2021) Time Series’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nisargchodavadiya/daily-gold-price-20152021-time-series on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Daily gold prices (2014-01-01 to 2021-12-29)
Raw Data Source: https://in.investing.com/commodities/gold-mini This data frame is preprocessed to time series analysis and forecasting
Forecast, Predict Prices, Time Series Forecasting
Gold Prices in this dataset makes no guarantee or warranty on the accuracy or completeness of the data provided.
--- Original source retains full ownership of the source dataset ---
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
In 2025, the price of platinum is forecast to hover around 1,150 U.S. dollars per troy ounce. Meanwhile, the cost of per troy ounce of gold is expected to amount to 1,700 U.S. dollars.
Precious metals
Precious metals are counted among the most valuable commodities worldwide. The most well known such metals are gold, silver and the platinum group metals. A precious metal can be used as an industrial commodity or as an investment. The major areas of application include the following sectors: technology, car-making, industrial manufacturing and jewelry making. Furthermore, gold and silver are used as coinage metals, and gold reserves are held by the central banks of many countries worldwide in order to store value or for use as a redemption medium. The idea behind this procedure is that gold reserves will help secure and stabilize the countries’ respective currencies. At 8,100 tons, the United States is the country with the most extensive stock of gold. It is kept in an underground vault at the New York Federal Reserve Bank.
Russia, the United States, Canada, South Africa and China are the main producers of precious metals. Silver is the most abundant of the metals, followed by gold and palladium. Barrick Gold is the world’s largest gold mining company. The Toronto-based firm produced some five million ounces of gold in 2020. The leading silver producers include Mexico-based Fresnillo, Poland’s KGHM Polska Miedž and the mining giant Glencore. Anglo Platinum and Impala are the key mining companies to produce platinum group metals.
In 2023, Silver prices are expected to settle at around 23.5 U.S. dollars per troy ounce. It is expected to remain the precious metal with the lowest value per ounce. The price of gold is forecast to drop to around 1,663 U.S. dollars per ounce, making it the most expensive precious metal in 2023.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Gold, the yellow shiny metal, has been the fancy of mankind since ages. From making jewelry to being used as an investment, gold covers a huge spectrum of use cases. Gold, like other metals, is also traded on the commodities indexes across the world. For better understanding time series in a real-world scenario, we will work with gold prices collected historically and predict its future value.
Metals such as gold have been traded for years across the world. Prices of gold are determined and used for trading the metal on commodity exchanges on a daily basis using a variety of factors. Using this daily price-level information only, our task is to predict future price of gold.
For the purpose of implementing time series forecasting technique , i will utilize gold pricing from Quandl. Quandl is a platform for financial, economic, and alternative datasets. To access publicly shared datasets on Quandl, we can use the pandas-datareader library as well as quandl (library from Quandl itself). The following snippet shows a quick one-liner to get your hands on gold pricing information since 1970s.
import quandl gold_df = quandl.get("BUNDESBANK/BBK01_WT5511")
The time series is univariate with date and time feature
-Start with Fundamentals: TSA & Box-Jenkins Methods
This notebook is an overview of TSA and traditional methods
For this dataset and tasks, i will depend upon Quandl. The premier source for financial, economic, and alternative datasets, serving investment professionals. Quandl’s platform is used by over 400,000 people, including analysts from the world’s top hedge funds, asset managers and investment banks.
#
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average gold price increased by 1.7% to $1800 per troy ounce in 2021. This year, it was forecast to ease, but rising political uncertainty may reverse the forecast.
Description The Import/Export Price Index (End Use) for Nonmonetary Gold refers to a measure used to track changes in the prices of imported nonmonetary gold. Nonmonetary gold refers to gold that is not used as a medium of exchange or currency but rather for purposes such as jewelry, industrial applications, or investment.
The Import/Export Price Index tracks the changes in the prices paid for goods and services purchased/exported from other countries.
By focusing specifically on nonmonetary gold, this index provides insights into the cost fluctuations of imported/Exported gold for various end uses, such as jewelry making, industrial processes, or investment purposes.
Monitoring the Gold Price Index for Nonmonetary Gold can be useful for businesses, investors, policymakers, and economists to understand trends in the international gold market, gauge inflationary pressures, and make informed decisions related to trade, investment, and monetary policy.
Files IQ12260.csv --> Export Price Index IR14270.csv --> Import Price Index
Citation U.S. Bureau of Labor Statistics, Import Price Index (End Use): Nonmonetary Gold [IR14270], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/IR14270, February 29, 2024.
U.S. Bureau of Labor Statistics, Export Price Index (End Use): Nonmonetary Gold [IQ12260], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/IQ12260, February 29, 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After three years of decline, the Indian gold market increased by 162% to $X in 2021. In general, consumption showed a relatively flat trend pattern. As a result, consumption attained the peak level and is likely to continue growth in the immediate term.
As of June 25, 2024, gold futures contracts to be settled in June 2030 were trading on U.S. markets at around ***** U.S. dollars per troy ounce. This is above the price of ******* U.S. dollars per troy ounce for contracts to be settled in June 2025, indicating that gold traders expect the price of gold to rise over the next five years. Gold futures are contracts that effectively lock in a price for an amount of gold to be purchased at a time in the future, which can then be traded on markets. Futures markets therefore provide an indicator of how investors think a commodities market will develop in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 3,350.92 USD/t.oz on July 14, 2025, down 0.18% from the previous day. Over the past month, Gold's price has fallen 0.98%, but it is still 38.32% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.