Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,354.76 USD/t.oz on July 11, 2025, up 0.92% from the previous day. Over the past month, Gold's price has fallen 0.92%, but it is still 39.14% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
Predictions: S&P GSCI Gold index is expected to continue its upward trend in the near term, driven by safe-haven demand amid ongoing geopolitical uncertainties and concerns about global economic growth. The index may face some resistance at higher levels, but it is likely to break through and reach new highs. Risks: The main risks to the S&P GSCI Gold index's upward trend include a significant improvement in the global economic outlook, a sharp decline in geopolitical tensions, and a shift in investor sentiment towards riskier assets. A prolonged period of high inflation could also pose a risk to the index, as investors may seek alternative safe-haven assets such as bonds.
As of May 2025, the London (morning fixing) price of an ounce of gold cost an average of ******** U.S. dollars, a slight increase compared to the average monthly morning fixing price of ******** U.S. dollars per ounce in the previous month.
London fixing gold price In January 2020, the average price for an ounce of fine gold was ******** U.S. dollars. It increased to ******** U.S. dollars as of April 2022. Although the monthly price for fine gold fluctuates, the average annual price of fine gold is gradually increasing. In 2001, the price for one ounce of gold was *** U.S. dollars, and by 2012 the price had risen to some ***** U.S. dollars. By 2024, the annual average gold price was nearly ***** dollars per ounce. In that year, global gold demand reached ******* metric tons worldwide. Price determinants of fine gold Fine gold is considered to be almost pure gold, where the value of the metal depends on the percentage of fineness. Twenty-four-carat gold is considered fine gold (from 99.9 percent gold by mass and higher). The London Gold Fix acts as a benchmark for the price of gold. The price of gold is set by the members of the London Gold Market Fixing Ltd undertaken by Barclays and its other members. The price is determined twice per business day at 10:30 am and 3:00 pm based on the London bullion market to settle contracts within the bullion market. The price is based on the equilibrium point between supply and demand agreed upon by participating banks. Gold prices must remain flexible, and gold fixing provides an instantaneous price at specified times.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold prices in , June, 2025 For that commodity indicator, we provide data from January 1960 to June 2025. The average value during that period was 600.07 USD per troy ounce with a minimum of 34.94 USD per troy ounce in January 1970 and a maximum of 3352.66 USD per troy ounce in June 2025. | TheGlobalEconomy.com
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The average monthly prices for gold increased worldwide between January 2014 and May 2025, although with some fluctuations. In January 2014, the average monthly price for gold worldwide stood at ******** nominal U.S. dollars per troy ounce. Significant jumps in the gold prices were observed, especially in the periods of uncertainty, as the investors tend to see gold as a safe investment option. For instance, the Corona pandemic acted as a shock to the economy, resulting in substantial increases in gold prices in 2020. As of May 2025, gold valued at ******** U.S. dollars per ounce, the highest value reported during this period.
Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.
This statistic depicts the average annual prices for gold from 2014 to 2024 with a forecast until 2026. In 2024, the average price for gold stood at 2,388 U.S. dollars per troy ounce, the highest value recorded throughout the period considered. In 2026, the average gold price is expected to increase, reaching 3,200 U.S. dollars per troy ounce.
In 2024, one troy ounce of gold had an annual average price of ******** U.S. dollars. Gold pricing determinants Gold is a metal that is considered malleable, ductile, and is known for its bright lustrous yellow color. This transition metal is highly valued as a precious metal for its use in coins, jewelry, and in investments. Gold was also once used as a standard for monetary policies between different countries. The price of gold is determined by daily fixings where participants agree to buy or sell at a set price or to maintain the price through supply and demand control. For gold, companies like Barclays Capital, Scotia-Mocatta, Sociétè Générale, HSBC, and Deutsche Bank are members in gold fixing at the London Bullion Market Association.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper investigates whether gold and silver can be considered safe havens by examining their long-run linkages with 13 stock price indices. More specifically, the stochastic properties of the differential between gold/silver prices and 13 stock indices are analysed applying fractional integration/cointegration methods to daily data, first for a sample from January 2010 until December 2019, then for one from January 2020 until June 2022 which includes the Covid-19 pandemic. The results can be summarised as follows. In the case of the pre-Covid-19 sample ending in December 2019, mean reversion is found for the gold price differential only vis-à-vis a single stock index (SP500). whilst in seven other cases, although the estimated value of d is below 1, the value 1 is inside the confidence interval and thus the unit root null hypothesis cannot be rejected. In the remaining cases the estimated values of d are significantly higher than 1. As for the silver differential, the upper bound is 1 only in two cases, whilst in the others mean reversion does not occur. Thus, the evidence is mixed on whether these precious metals can be seen as safe havens, though it appears that this property characterises gold in a slightly higher number of cases. By contrast, when using the sample starting in January 2020, the evidence in favour of gold and silver as possible safe havens is pretty conclusive since mean reversion is only found in a single case, namely that of the gold differential vis-à-vis the New Zealand stock index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was collected for the period spanning between 01/07/2019 and 31/12/2022.The historical Twitter volume were retrieved using ‘‘Bitcoin’’ (case insensitive) as the keyword from bitinfocharts.com. Google search volume was retrieved using library Gtrends. 2000 tweets per day using 4 times interval were crawled by employing Twitter API with the keyword “Bitcoin. The daily closing prices of Bitcoin, oil price, gold price, and U.S stock market indexes (S&P 500, NASDAQ, and Dow Jones Industrial Average) were collected using R libraries either Quantmod or Quandl.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper investigates whether gold and silver can be considered safe havens by examining their long-run linkages with 13 stock price indices. More specifically, the stochastic properties of the differential between gold/silver prices and 13 stock indices are analysed applying fractional integration/cointegration methods to daily data, first for a sample from January 2010 until December 2019, then for one from January 2020 until June 2022 which includes the Covid-19 pandemic. The results can be summarised as follows. In the case of the pre-Covid-19 sample ending in December 2019, mean reversion is found for the gold price differential only vis-à-vis a single stock index (SP500). whilst in seven other cases, although the estimated value of d is below 1, the value 1 is inside the confidence interval and thus the unit root null hypothesis cannot be rejected. In the remaining cases the estimated values of d are significantly higher than 1. As for the silver differential, the upper bound is 1 only in two cases, whilst in the others mean reversion does not occur. Thus, the evidence is mixed on whether these precious metals can be seen as safe havens, though it appears that this property characterises gold in a slightly higher number of cases. By contrast, when using the sample starting in January 2020, the evidence in favour of gold and silver as possible safe havens is pretty conclusive since mean reversion is only found in a single case, namely that of the gold differential vis-à-vis the New Zealand stock index.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Among the five largest gold mining companies, Goldfields — headquartered in Johannesburg, South Africa-saw the largest growth in its share price recently. As of June 2025, the company had reached ****** index points. While all the top five mining companies experienced significant increase in their share prices over this period despite some fluctuations, Barrick Mining Corporation had the least increase when compared to others, with an index point of ******.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold prices recover after consecutive weekly losses, trading above $3,260 an ounce as investors await the Federal Reserve's rate decision. Market dynamics shift amid global trade uncertainties.
Description The Import/Export Price Index (End Use) for Nonmonetary Gold refers to a measure used to track changes in the prices of imported nonmonetary gold. Nonmonetary gold refers to gold that is not used as a medium of exchange or currency but rather for purposes such as jewelry, industrial applications, or investment.
The Import/Export Price Index tracks the changes in the prices paid for goods and services purchased/exported from other countries.
By focusing specifically on nonmonetary gold, this index provides insights into the cost fluctuations of imported/Exported gold for various end uses, such as jewelry making, industrial processes, or investment purposes.
Monitoring the Gold Price Index for Nonmonetary Gold can be useful for businesses, investors, policymakers, and economists to understand trends in the international gold market, gauge inflationary pressures, and make informed decisions related to trade, investment, and monetary policy.
Files IQ12260.csv --> Export Price Index IR14270.csv --> Import Price Index
Citation U.S. Bureau of Labor Statistics, Import Price Index (End Use): Nonmonetary Gold [IR14270], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/IR14270, February 29, 2024.
U.S. Bureau of Labor Statistics, Export Price Index (End Use): Nonmonetary Gold [IQ12260], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/IQ12260, February 29, 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Silver rose to 38.37 USD/t.oz on July 11, 2025, up 3.65% from the previous day. Over the past month, Silver's price has risen 5.59%, and is up 24.68% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Silver - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,354.76 USD/t.oz on July 11, 2025, up 0.92% from the previous day. Over the past month, Gold's price has fallen 0.92%, but it is still 39.14% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.