Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5445802%2F232b3878bd6f687f8337100be97a2059%2F2daa5d51-a570-4240-a994-21b429313d86.webp?generation=1702448669305664&alt=media" alt="">
The raw data that is used in this dataset is the basic OHLC time series dataset for a gold market of the last 20 years collected and verified from different exchanges. This dataset contains over 8677 daily candle prices (rows) and in order to make it wealthy, extra datasets were merged with it to provide more details to each data frame. The sub-datasets contain historical economic information such as interest rates, inflation rates, and others that are highly related and affecting the gold market movement.
Raw dataset:
Time Range: 1988-08-01 to 2023-11-10 Number of data entries: 4050 Number of features: 4 (open, high, low, close OHLC daily candle price)
What are done to prepare this dataset : 1. Starting Exploratory Data Analysis (EDA) for all the raw datasets. 2. Find and fill in missing days. 3. Merge all the datasets into one master dataset based on the time index. 4. Verify the merge process. 5. Check and remove Duplicates. 6. Check and fill in missing values. 7. Including the basic technical indicators and price moving averages. 8. Outliers Inspection and treatment by different methods. 9. Adding targets. 10. Feature Analysis to identify the importance of each feature. 11. Final check.
After data preparation and feature engineering:
Time Range: 1999-12-30 to 2023-10-01
Number of data entries: 8677
Number of featuers: 28
Features list: open, high, low, close (OHLC daily candle price) dxy_open, dxy_close, dxy_high, dxy_low, fred_fedfunds, usintr, usiryy (Ecnomic inducators) RSI, MACD, MACD_signal, MACD_hist, ADX, CCI (Technical indicators) ROC SMA_10, SMA_20, EMA_10, EMA_20, SMA_50, EMA_50, SMA_100, SMA_200, EMA_100, EMA_200 (Moving avrages)
Targets List: next_1_day_price next_3_day_price next_7_day_price next_30_day_price next_1_day_Price_Change next_3_day_Price_Change next_7_day_Price_Change next_30_day_Price_Change next_30_day_Price_Change next_1_day_price_direction( Up, Same ,Down) next_3_day_price_direction( Up, Same ,Down) next_7_day_price_direction( Up, Same ,Down) next_30_day_price_direction( Up, Same ,Down)
Abbreviations of Features: dxy = US Dollar Index fred_fedfunds= Effective Federal Funds Rate usintr= US Interest Rate usiryy= US Inflation Rate YOY RSI= Relative Strength Index MACD= Moving Average Convergence Divergence ADX= Avrerage Directional Index CCI=Commodity Channel Index ROC= Rate of Change SMA= Simple Moving Average EMA= Exponential Moving Average
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Core consumer prices in the United States increased 3 percent in September of 2025 over the same month in the previous year. This dataset provides - United States Core Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in India decreased to 0.25 percent in October from 1.44 percent in September of 2025. This dataset provides - India Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
EGPB - An Event-based Gold Price Benchmark Dataset
This benchmark dataset consists of 8030 rows and 36 variables sourced from multiple credible economic websites, covering a period from January 2001 to December 2022. This dataset can be utilized to predict gold prices specifically or to aid any economic field that is influenced by the variables in this dataset.
Key variables & Features include:
β’ Previous gold prices
β’ Future gold prices with predictions for one day, one week, and one month
β’ Oil prices
β’ Standard & Poor's 500 Index (S&P 500)
β’ Dow Jones Industrial (DJI)
β’ US dollar index
β’ US treasury
β’ Inflation rate
β’ Consumer price index (CPI)
β’ Federal funds rate
β’ Silver prices
β’ Copper prices
β’ Iron prices
β’ Platinum prices
β’ Palladium prices
Additionally, the dataset considers global events that may impact gold prices, which were categorized into groups and collected from three distinct sources: the Al-Jazeera website spanning from 2022 to 2019, the Investing website spanning from 2018 to 2016, and the Yahoo Finance website spanning from 2007 to 2001.
These events data were then divided into multiple groups:
β’ Economic data
β’ Politics
β’ logistics
β’ Oil
β’ OPEC
β’ Dollar currency
β’ Sterling pound currency
β’ Russian ruble currency
β’ Yen currency
β’ Euro currency
β’ US stocks
β’ Global stocks
β’ Inflation
β’ Job reports
β’ Unemployment rates
β’ CPI rate
β’ Interest rates
β’ Bonds
These events were encoded using a numeric value, where 0 represented no events, 1 represented low events, 2 represented high events, 3 represented stable events, 4 represented unstable events, and 5 represented events that were observed during the day but had no effect on the dataset.
Cite this dataset: Farah Mansour and Wael Etaiwi, "EGPBD: An Event-based Gold Price Benchmark Dataset," 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 2023, pp. 1-7, doi: 10.1109/ICECCME57830.2023.10252987.
@INPROCEEDINGS{10252987, author={Mansour, Farah and Etaiwi, Wael}, booktitle={2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)}, title={EGPBD: An Event-based Gold Price Benchmark Dataset}, year={2023}, volume={}, number={}, pages={1-7}, doi={10.1109/ICECCME57830.2023.10252987}}
Facebook
TwitterPermutable AIβs Gold Intelligence dataset (XAU) tracks the drivers of gold prices, from Federal Reserve interest rate policy and inflation trends to central bank buying and geopolitical risk. Advanced story signal detection identifies new narratives, sentiment shifts, and sustained coverage that move gold markets. With structured historical data and real-time sentiment analytics, traders and institutions can forecast gold price movements and hedge risk effectively. Delivered through the Co-Pilot API, gold market intelligence is available with millisecond latency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Gold Hill, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Gold Hill decreased by $5,862 (9.65%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 3 years and declined for 8 years.
https://i.neilsberg.com/ch/gold-hill-or-median-household-income-trend.jpeg" alt="Gold Hill, OR median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Hill median household income. You can refer the same here
Facebook
TwitterReal time prices in the diamond market are reflected by the so-called Diamond Financial Index (DFX) which is available on a daily base since April 2018.
As diamond prices are influenced by many factors like trade barriers, political instability, operational disruptions like mine closures or economic downturns resp. upturns, it is not an easy task to predict the development of future diamond prices.
To predict prices, indicators are needed. Empirical findings support the argument that diamond prices respond to economic downturns resp. upturns and are therefore also correlated with inflation rates and interest rates resp. fed rates. Also gold prices could be an indicator for the development of diamond prices.
Because the US are playing quite a big role in the diamond business, the following US rates can be considered:
o inflation rate (10-year breakeven inflation rate) o interest rate (10-year treasury inflation-indexed security, constant maturity, risk-free) o fed rate (effective federal funds rate)
Moreover, gold prices could be considered as an indicator.
The following five datasets have been downloaded from the following websites and merged to one dataset:
o diamond price (DFX): https://www.investing.com/indices/get-diamonds-general o inflation rate: https://fred.stlouisfed.org/series/T10YIE o interest rate: https://fred.stlouisfed.org/series/DFII10 o fed rate: https://fred.stlouisfed.org/series/DFF o gold price: https://www.boerse-online.de/rohstoffe/historisch/goldpreis/usd/
To merge the datasets, date has been used as index. A few missing values in the datasets have been filled in by copying the value from the day before (see file "diamond_data_merged_with_other_variables.csv").
Please note: I added one additional version of the dataset where ID is used as index (not date). Missing values are not filled in in this version (see file "df_diamond_data_merged_with_other_variables.csv"). I would recommend using the dataset "diamond_data_merged_with_other_variables.csv" with date as index.
The following questions could be answered:
o How did diamond prices, inflation rate, interest rate, fed rate and gold price develop since 2018? o How is the correlation between diamond prices and inflation rate, interest rate, fed rate and gold prices? o How will diamond prices develop in the future?
When it comes to price prediction machine learning has been successful in predicting stock market prices through a host of different time series models. There is also a limited but quite restrictive application in predicting cryptocurrency prices. Often neural networks like LSTM (Long Short Term Memory) are used. LSTM oder other models, e.g. ARIMA, could be also used here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Pakistan decreased to 6.10 percent in November from 6.20 percent in October of 2025. This dataset provides the latest reported value for - Pakistan Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
I'm creating a new website in which I need this type of data. I didn't found it easily available as I had to scrape it from an interactive graph, so now I upload it here for everyone
In this dataset you can find real and nominal gold prices since 1791 to 2020. The explanation of the differences between real and nominal prices are:
Β· Nominal values are the current monetary values. Β· Real values are adjusted for inflation and show prices/wages at constant prices. Β· Real values give a better guide to what you can actually buy and the opportunity costs you face.
Example of real vs nominal:
Β· If you receive an 8% increase in your wages from Β£100 to Β£108, this is the nominal increase. Β· However, if inflation is 2%, then the real increase in wages is (8-2%) 6%. Β· The real wage is a better guide to how your living standards changes. It shows what you are actually able to buy with the extra increase in wages. Β· If wages increased 80%, but inflation was also 80%, the real increase in wages would be 0% β in effect, despite the monetary increase in wages of 80%, the amount of goods and services you could buy would be the same.
Hope this dataset is useful for you! Any questions or answers do not hesitate in contact me.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Gold Beach, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Gold Beach decreased by $19,393 (27.29%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 7 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Beach median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Gold Beach, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Gold Beach decreased by $19,879 (29.13%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 4 years and declined for 7 years.
https://i.neilsberg.com/ch/gold-beach-or-median-household-income-trend.jpeg" alt="Gold Beach, OR median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Beach median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the median household income in Gold Beach. It can be utilized to understand the trend in median household income and to analyze the income distribution in Gold Beach by household type, size, and across various income brackets.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Gold Beach median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Gold Bar, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Gold Bar increased by $18,187 (23.59%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 7 years and declined for 6 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Bar median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Gold Bar, WA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Bar median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gold Hill. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gold Hill, the median income for all workers aged 15 years and older, regardless of work hours, was $35,260 for males and $25,750 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 27% between the median incomes of males and females in Gold Hill. With women, regardless of work hours, earning 73 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Gold Hill.
- Full-time workers, aged 15 years and older: In Gold Hill, among full-time, year-round workers aged 15 years and older, males earned a median income of $53,281, while females earned $47,981, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Gold Hill.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Gold Hill.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Hill median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gold Bar. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gold Bar, the median income for all workers aged 15 years and older, regardless of work hours, was $49,429 for males and $39,764 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 20% between the median incomes of males and females in Gold Bar. With women, regardless of work hours, earning 80 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Gold Bar.
- Full-time workers, aged 15 years and older: In Gold Bar, among full-time, year-round workers aged 15 years and older, males earned a median income of $72,800, while females earned $66,417, resulting in a 9% gender pay gap among full-time workers. This illustrates that women earn 91 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Gold Bar.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Gold Bar.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Bar median household income by race. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Historically, gold had been used as a form of currency in various parts of the world including the USA. In present times, precious metals like gold are held with central banks of all countries to guarantee re-payment of foreign debts, and also to control inflation which results in reflecting the financial strength of the country. Recently, emerging world economies, such as China, Russia, and India have been big buyers of gold, whereas the USA, SoUSA, South Africa, and Australia are among the big seller of gold.
Forecasting rise and fall in the daily gold rates can help investors to decide when to buy (or sell) the commodity. But Gold prices are dependent on many factors such as prices of other precious metals, prices of crude oil, stock exchange performance, Bonds prices, currency exchange rates, etc.
The challenge of this project is to accurately predict the future adjusted closing price of Gold ETF across a given period of time in the future. The problem is a regression problem, because the output value which is the adjusted closing price in this project is continuous value.
Data for this study is collected from November 18th 2011 to January 1st 2019 from various sources. The data has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poorβs (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered.
The dataset has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poorβs (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered.
The historical data of Gold ETF fetched from Yahoo finance has 7 columns, Date, Open, High, Low, Close, Adjusted Close, and Volume, the difference between Adjusted Close and Close is that the closing price of a stock is the price of that stock at the close of the trading day. Whereas the adjusted closing price takes into account factors such as dividends, stock splits, and new stock offerings to determine a value. So, Adjusted Close is the outcome variable which is the value you have to predict.
https://i.ibb.co/C29bbXf/snapshot.png" alt="">
The data is collected from Yahoo finance.
Can you predict Gold prices accurately using traditional machine learning algorithms
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
Gold prices refer to the value or cost of gold in the market. Gold is a precious metal that has been highly valued throughout history and is widely recognized as a store of value and a safe haven investment. The price of gold is determined by various factors, including supply and demand dynamics, economic conditions, geopolitical events, and investor sentiment.
The price of gold is typically quoted per ounce, but it can also be measured in grams, kilograms, or other units of weight. Gold prices are influenced by several key factors:
Supply and Demand: The availability of gold from mining operations and recycling, as well as the demand from industries such as jewelry, technology, and central banks, plays a crucial role in determining prices. If demand exceeds supply, prices tend to rise, and vice versa.
Economic Factors: Gold prices are influenced by macroeconomic indicators such as interest rates, inflation, and currency fluctuations. When inflation is high, or there is economic uncertainty, investors often turn to gold as a hedge against inflation or a safe haven asset, which can drive up prices.
Geopolitical Events: Political instability, conflicts, trade disputes, or any major geopolitical event can impact gold prices. These events create uncertainty in financial markets, leading investors to seek the relative stability of gold, thus increasing its demand and driving up prices.
Investor Sentiment: Investor sentiment and market speculation can significantly affect gold prices. If investors perceive gold as an attractive investment, they may buy more, increasing demand and driving prices higher. Conversely, if investor sentiment turns negative, prices may decline as selling pressure increases.
It is important to note that gold prices can be volatile and subject to significant fluctuations over time. As a result, investors and traders closely monitor gold prices to make informed decisions about buying, selling, or holding gold as an investment. Gold prices are often tracked through live price charts, financial news outlets, and commodities exchanges around the world.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gold Beach. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gold Beach, the median income for all workers aged 15 years and older, regardless of work hours, was $35,270 for males and $22,647 for females.
These income figures highlight a substantial gender-based income gap in Gold Beach. Women, regardless of work hours, earn 64 cents for each dollar earned by men. This significant gender pay gap, approximately 36%, underscores concerning gender-based income inequality in the city of Gold Beach.
- Full-time workers, aged 15 years and older: In Gold Beach, among full-time, year-round workers aged 15 years and older, males earned a median income of $48,472, while females earned $50,682Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.05 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gold Beach median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.