100+ datasets found
  1. Powerful Data for Power BI

    • kaggle.com
    zip
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiv_D24Coder (2023). Powerful Data for Power BI [Dataset]. https://www.kaggle.com/datasets/shivd24coder/powerful-data-for-power-bi
    Explore at:
    zip(907404 bytes)Available download formats
    Dataset updated
    Aug 28, 2023
    Authors
    Shiv_D24Coder
    Description

    Explore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!

  2. Top 1000 Kaggle Datasets

    • kaggle.com
    zip
    Updated Jan 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trrishan (2022). Top 1000 Kaggle Datasets [Dataset]. https://www.kaggle.com/datasets/notkrishna/top-1000-kaggle-datasets
    Explore at:
    zip(34269 bytes)Available download formats
    Dataset updated
    Jan 3, 2022
    Authors
    Trrishan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    From wiki

    Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practitioners. Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

    Kaggle got its start in 2010 by offering machine learning competitions and now also offers a public data platform, a cloud-based workbench for data science, and Artificial Intelligence education. Its key personnel were Anthony Goldbloom and Jeremy Howard. Nicholas Gruen was founding chair succeeded by Max Levchin. Equity was raised in 2011 valuing the company at $25 million. On 8 March 2017, Google announced that they were acquiring Kaggle.[1][2]

    Source: Kaggle

  3. d

    Dashboards and Visualizations Gallery

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Dashboards and Visualizations Gallery [Dataset]. https://catalog.data.gov/dataset/dashboards-and-visualizations-gallery
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    City of Washington, DC
    Description

    The District of Columbia offers several interactive online visualizations highlighting data and information from various fields of interest such as crime statistics, public school profiles, detailed property information and more. The web visualizations in this group present data coming from agencies across the Government of the District of Columbia. Click each to read a brief introduction and to access the site. This app is embedded in https://opendata.dc.gov/pages/dashboards.

  4. N

    Data visualization

    • data.cityofnewyork.us
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    311 (2025). Data visualization [Dataset]. https://data.cityofnewyork.us/Social-Services/Data-visualization/ge9m-qqfx
    Explore at:
    xml, xlsx, kmz, application/geo+json, kml, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Authors
    311
    Description

    All 311 Service Requests from 2010 to present. This information is automatically updated daily.

    Click here to download data from 2011 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2011/fpz8-jqf4

    Click here to download data from 2012 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2012/as38-8eb5

    Click here to download data from 2013 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2013/hybb-af8n

    Click here to download data from 2014 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2014/vtzg-7562

    Click here to download data from 2015 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2015/57g5-etyj

  5. All Seaborn Built-in Datasets 📊✨

    • kaggle.com
    zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdelrahman Mohamed (2024). All Seaborn Built-in Datasets 📊✨ [Dataset]. https://www.kaggle.com/datasets/abdoomoh/all-seaborn-built-in-datasets
    Explore at:
    zip(1383218 bytes)Available download formats
    Dataset updated
    Aug 27, 2024
    Authors
    Abdelrahman Mohamed
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: - This dataset includes all 22 built-in datasets from the Seaborn library, a widely used Python data visualization tool. Seaborn's built-in datasets are essential resources for anyone interested in practicing data analysis, visualization, and machine learning. They span a wide range of topics, from classic datasets like the Iris flower classification to real-world data such as Titanic survival records and diamond characteristics.

    • Included Datasets:
      • Anagrams: Analysis of word anagram patterns.
      • Anscombe: Anscombe's quartet demonstrating the importance of data visualization.
      • Attention: Data on attention span variations in different scenarios.
      • Brain Networks: Connectivity data within brain networks.
      • Car Crashes: US car crash statistics.
      • Diamonds: Data on diamond properties including price, cut, and clarity.
      • Dots: Randomly generated data for scatter plot visualization.
      • Dow Jones: Historical records of the Dow Jones Industrial Average.
      • Exercise: The relationship between exercise and health metrics.
      • Flights: Monthly passenger numbers on flights.
      • FMRI: Functional MRI data capturing brain activity.
      • Geyser: Eruption times of the Old Faithful geyser.
      • Glue: Strength of glue under different conditions.
      • Health Expenditure: Health expenditure statistics across countries.
      • Iris: Famous dataset for classifying Iris species.
      • MPG: Miles per gallon for various vehicles.
      • Penguins: Data on penguin species and their features.
      • Planets: Characteristics of discovered exoplanets.
      • Sea Ice: Measurements of sea ice extent.
      • Taxis: Taxi trips data in a city.
      • Tips: Tipping data collected from a restaurant.
      • Titanic: Survival data from the Titanic disaster.

    This complete collection serves as an excellent starting point for anyone looking to improve their data science skills, offering a wide array of datasets suitable for both beginners and advanced users.

  6. R

    Data Visualization Dataset

    • universe.roboflow.com
    zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    practicum (2025). Data Visualization Dataset [Dataset]. https://universe.roboflow.com/practicum-ziryz/data-visualization-k1jyr/dataset/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    practicum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Food Bounding Boxes
    Description

    Data Visualization

    ## Overview
    
    Data Visualization is a dataset for object detection tasks - it contains Food annotations for 7,576 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  7. R

    Data Visualization 2 (trail) Dataset

    • universe.roboflow.com
    zip
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    practicum (2025). Data Visualization 2 (trail) Dataset [Dataset]. https://universe.roboflow.com/practicum-ziryz/data-visualization-2-trail-yxvoh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    practicum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Food 5Sze Bounding Boxes
    Description

    Data Visualization 2 (trail)

    ## Overview
    
    Data Visualization 2 (trail) is a dataset for object detection tasks - it contains Food 5Sze annotations for 7,580 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. c

    Power BI Sample Dataset

    • cubig.ai
    zip
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Power BI Sample Dataset [Dataset]. https://cubig.ai/store/products/389/power-bi-sample-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Power BI Sample Data is a financial sample dataset provided for Power BI practice and data visualization exercises that includes a variety of financial metrics and transaction information, including sales, profits, and expenses.

    2) Data Utilization (1) Power BI Sample Data has characteristics that: • This dataset consists of numerical and categorical variables such as transaction date, region, product category, sales, profit, and cost, optimized for aggregation, analysis, and visualization. (2) Power BI Sample Data can be used to: • Revenue and Revenue Analysis: Analyze sales and profit data by region, product, and period to understand business performance and trends. • Power BI Dashboard Practice: Utilize a variety of financial metrics and transaction data to design and practice dashboards, reports, visualization charts, and more directly at Power BI.

  9. Netflix Data: Cleaning, Analysis and Visualization

    • kaggle.com
    zip
    Updated Aug 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdulrasaq Ariyo (2022). Netflix Data: Cleaning, Analysis and Visualization [Dataset]. https://www.kaggle.com/datasets/ariyoomotade/netflix-data-cleaning-analysis-and-visualization
    Explore at:
    zip(276607 bytes)Available download formats
    Dataset updated
    Aug 26, 2022
    Authors
    Abdulrasaq Ariyo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Netflix is a popular streaming service that offers a vast catalog of movies, TV shows, and original contents. This dataset is a cleaned version of the original version which can be found here. The data consist of contents added to Netflix from 2008 to 2021. The oldest content is as old as 1925 and the newest as 2021. This dataset will be cleaned with PostgreSQL and visualized with Tableau. The purpose of this dataset is to test my data cleaning and visualization skills. The cleaned data can be found below and the Tableau dashboard can be found here .

    Data Cleaning

    We are going to: 1. Treat the Nulls 2. Treat the duplicates 3. Populate missing rows 4. Drop unneeded columns 5. Split columns Extra steps and more explanation on the process will be explained through the code comments

    --View dataset
    
    SELECT * 
    FROM netflix;
    
    
    --The show_id column is the unique id for the dataset, therefore we are going to check for duplicates
                                      
    SELECT show_id, COUNT(*)                                                                                      
    FROM netflix 
    GROUP BY show_id                                                                                              
    ORDER BY show_id DESC;
    
    --No duplicates
    
    --Check null values across columns
    
    SELECT COUNT(*) FILTER (WHERE show_id IS NULL) AS showid_nulls,
        COUNT(*) FILTER (WHERE type IS NULL) AS type_nulls,
        COUNT(*) FILTER (WHERE title IS NULL) AS title_nulls,
        COUNT(*) FILTER (WHERE director IS NULL) AS director_nulls,
        COUNT(*) FILTER (WHERE movie_cast IS NULL) AS movie_cast_nulls,
        COUNT(*) FILTER (WHERE country IS NULL) AS country_nulls,
        COUNT(*) FILTER (WHERE date_added IS NULL) AS date_addes_nulls,
        COUNT(*) FILTER (WHERE release_year IS NULL) AS release_year_nulls,
        COUNT(*) FILTER (WHERE rating IS NULL) AS rating_nulls,
        COUNT(*) FILTER (WHERE duration IS NULL) AS duration_nulls,
        COUNT(*) FILTER (WHERE listed_in IS NULL) AS listed_in_nulls,
        COUNT(*) FILTER (WHERE description IS NULL) AS description_nulls
    FROM netflix;
    
    We can see that there are NULLS. 
    director_nulls = 2634
    movie_cast_nulls = 825
    country_nulls = 831
    date_added_nulls = 10
    rating_nulls = 4
    duration_nulls = 3 
    

    The director column nulls is about 30% of the whole column, therefore I will not delete them. I will rather find another column to populate it. To populate the director column, we want to find out if there is relationship between movie_cast column and director column

    -- Below, we find out if some directors are likely to work with particular cast
    
    WITH cte AS
    (
    SELECT title, CONCAT(director, '---', movie_cast) AS director_cast 
    FROM netflix
    )
    
    SELECT director_cast, COUNT(*) AS count
    FROM cte
    GROUP BY director_cast
    HAVING COUNT(*) > 1
    ORDER BY COUNT(*) DESC;
    
    With this, we can now populate NULL rows in directors 
    using their record with movie_cast 
    
    UPDATE netflix 
    SET director = 'Alastair Fothergill'
    WHERE movie_cast = 'David Attenborough'
    AND director IS NULL ;
    
    --Repeat this step to populate the rest of the director nulls
    --Populate the rest of the NULL in director as "Not Given"
    
    UPDATE netflix 
    SET director = 'Not Given'
    WHERE director IS NULL;
    
    --When I was doing this, I found a less complex and faster way to populate a column which I will use next
    

    Just like the director column, I will not delete the nulls in country. Since the country column is related to director and movie, we are going to populate the country column with the director column

    --Populate the country using the director column
    
    SELECT COALESCE(nt.country,nt2.country) 
    FROM netflix AS nt
    JOIN netflix AS nt2 
    ON nt.director = nt2.director 
    AND nt.show_id <> nt2.show_id
    WHERE nt.country IS NULL;
    UPDATE netflix
    SET country = nt2.country
    FROM netflix AS nt2
    WHERE netflix.director = nt2.director and netflix.show_id <> nt2.show_id 
    AND netflix.country IS NULL;
    
    
    --To confirm if there are still directors linked to country that refuse to update
    
    SELECT director, country, date_added
    FROM netflix
    WHERE country IS NULL;
    
    --Populate the rest of the NULL in director as "Not Given"
    
    UPDATE netflix 
    SET country = 'Not Given'
    WHERE country IS NULL;
    

    The date_added rows nulls is just 10 out of over 8000 rows, deleting them cannot affect our analysis or visualization

    --Show date_added nulls
    
    SELECT show_id, date_added
    FROM netflix_clean
    WHERE date_added IS NULL;
    
    --DELETE nulls
    
    DELETE F...
    
  10. a

    Boston Hubway Data Visualization Challenge Dataset

    • academictorrents.com
    bittorrent
    Updated Nov 24, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Department of Transportation (MassDOT) (2015). Boston Hubway Data Visualization Challenge Dataset [Dataset]. https://academictorrents.com/details/3e395a74e333156daddcd67d614415fc9e237340
    Explore at:
    bittorrent(25999914)Available download formats
    Dataset updated
    Nov 24, 2015
    Dataset authored and provided by
    Massachusetts Department of Transportation (MassDOT)
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Area covered
    Boston
    Description

    The Hubway trip history data includes every trip taken through Nov 2013 ? with date, time, origin and destination stations, plus the bike number and more. Data from 2011/07 through 2013/11 The Hubway trip history data Every time a Hubway user checks a bike out from a station, the system records basic information about the trip. Those anonymous data points have been exported into the spreadsheet. Please note, all private data including member names have been removed from these files. What can the data tell us? The CSV file contains data for every Hubway trip from the system launch on July 28th, 2011, through the end of September, 2012. The file contains the data points listed below for each trip. We ve also posed some of the questions you could answer with this dataset - we re sure you.ll have lots more of your own. Duration - Duration of trip. What s the average trip duration for annual members vs. casual users? Start date - Includes start date and time. What are the peak Hubway hours?

  11. Customer Sale Dataset for Data Visualization

    • kaggle.com
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atul (2025). Customer Sale Dataset for Data Visualization [Dataset]. https://www.kaggle.com/datasets/atulkgoyl/customer-sale-dataset-for-visualization
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Atul
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This synthetic dataset is designed specifically for practicing data visualization and exploratory data analysis (EDA) using popular Python libraries like Seaborn, Matplotlib, and Pandas.

    Unlike most public datasets, this one includes a diverse mix of column types:

    📅 Date columns (for time series and trend plots) 🔢 Numerical columns (for histograms, boxplots, scatter plots) 🏷️ Categorical columns (for bar charts, group analysis)

    Whether you are a beginner learning how to visualize data or an intermediate user testing new charting techniques, this dataset offers a versatile playground.

    Feel free to:

    Create EDA notebooks Practice plotting techniques Experiment with filtering, grouping, and aggregations 🛠️ No missing values, no data cleaning needed — just download and start exploring!

    Hope you find this helpful. Looking forward to hearing from you all.

  12. B

    Python Code for Visualizing COVID-19 data

    • borealisdata.ca
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Chartier; Geoffrey Rockwell (2023). Python Code for Visualizing COVID-19 data [Dataset]. http://doi.org/10.5683/SP3/PYEQL0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Borealis
    Authors
    Ryan Chartier; Geoffrey Rockwell
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The purpose of this code is to produce a line graph visualization of COVID-19 data. This Jupyter notebook was built and run on Google Colab. This code will serve mostly as a guide and will need to be adapted where necessary to be run locally. The separate COVID-19 datasets uploaded to this Dataverse can be used with this code. This upload is made up of the IPYNB and PDF files of the code.

  13. Divvy_Trips

    • kaggle.com
    zip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FernandoGarciaH24 (2024). Divvy_Trips [Dataset]. https://www.kaggle.com/datasets/fernandogarciah24/divvy-trips/code
    Explore at:
    zip(25635550 bytes)Available download formats
    Dataset updated
    Oct 29, 2024
    Authors
    FernandoGarciaH24
    Description

    The dataset compiles rides from Q1_2019 and Q1_2020 from a cycling company in Chicago. The data needs to be cleaned and prepare for further analysis with some visualizations to make it easier to spot trends and recommendations.

  14. Human Resources Data Set

    • kaggle.com
    zip
    Updated Oct 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr. Rich (2020). Human Resources Data Set [Dataset]. https://www.kaggle.com/datasets/rhuebner/human-resources-data-set/discussion
    Explore at:
    zip(17041 bytes)Available download formats
    Dataset updated
    Oct 19, 2020
    Authors
    Dr. Rich
    Description

    Updated 30 January 2023

    Version 14 of Dataset

    License Update:

    There has been some confusion around licensing for this data set. Dr. Carla Patalano and Dr. Rich Huebner are the original authors of this dataset.

    We provide a license to anyone who wishes to use this dataset for learning or teaching. For the purposes of sharing, please follow this license:

    CC-BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

    Codebook

    https://rpubs.com/rhuebner/hrd_cb_v14

    PLEASE NOTE -- I recently updated the codebook - please use the above link. A few minor discrepancies were identified between the codebook and the dataset. Please feel free to contact me through LinkedIn (www.linkedin.com/in/RichHuebner) to report discrepancies and make requests.

    Context

    HR data can be hard to come by, and HR professionals generally lag behind with respect to analytics and data visualization competency. Thus, Dr. Carla Patalano and I set out to create our own HR-related dataset, which is used in one of our graduate MSHRM courses called HR Metrics and Analytics, at New England College of Business. We created this data set ourselves. We use the data set to teach HR students how to use and analyze the data in Tableau Desktop - a data visualization tool that's easy to learn.

    This version provides a variety of features that are useful for both data visualization AND creating machine learning / predictive analytics models. We are working on expanding the data set even further by generating even more records and a few additional features. We will be keeping this as one file/one data set for now. There is a possibility of creating a second file perhaps down the road where you can join the files together to practice SQL/joins, etc.

    Note that this dataset isn't perfect. By design, there are some issues that are present. It is primarily designed as a teaching data set - to teach human resources professionals how to work with data and analytics.

    Content

    We have reduced the complexity of the dataset down to a single data file (v14). The CSV revolves around a fictitious company and the core data set contains names, DOBs, age, gender, marital status, date of hire, reasons for termination, department, whether they are active or terminated, position title, pay rate, manager name, and performance score.

    Recent additions to the data include: - Absences - Most Recent Performance Review Date - Employee Engagement Score

    Acknowledgements

    Dr. Carla Patalano provided the baseline idea for creating this synthetic data set, which has been used now by over 200 Human Resource Management students at the college. Students in the course learn data visualization techniques with Tableau Desktop and use this data set to complete a series of assignments.

    Inspiration

    We've included some open-ended questions that you can explore and try to address through creating Tableau visualizations, or R or Python analyses. Good luck and enjoy the learning!

    • Is there any relationship between who a person works for and their performance score?
    • What is the overall diversity profile of the organization?
    • What are our best recruiting sources if we want to ensure a diverse organization?
    • Can we predict who is going to terminate and who isn't? What level of accuracy can we achieve on this?
    • Are there areas of the company where pay is not equitable?

    There are so many other interesting questions that could be addressed through this interesting data set. Dr. Patalano and I look forward to seeing what we can come up with.

    If you have any questions or comments about the dataset, please do not hesitate to reach out to me on LinkedIn: http://www.linkedin.com/in/RichHuebner

    You can also reach me via email at: Richard.Huebner@go.cambridgecollege.edu

  15. Top 2500 Kaggle Datasets

    • kaggle.com
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saket Kumar (2024). Top 2500 Kaggle Datasets [Dataset]. http://doi.org/10.34740/kaggle/dsv/7637365
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saket Kumar
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.

    Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.

    Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.

    Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.

    Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.

    Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.

    Column Definitions:

    Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.

  16. Dataset for data visualization

    • kaggle.com
    zip
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nadeem Qamar (2024). Dataset for data visualization [Dataset]. https://www.kaggle.com/datasets/nadeemkaggle123/dataset-for-data-visualization/code
    Explore at:
    zip(425673 bytes)Available download formats
    Dataset updated
    Aug 6, 2024
    Authors
    Nadeem Qamar
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Nadeem Qamar

    Released under MIT

    Contents

  17. supply chain data set

    • kaggle.com
    Updated Aug 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    shiva iyer (2023). supply chain data set [Dataset]. https://www.kaggle.com/datasets/shivaiyer129/supply-chain-data-set
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 8, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    shiva iyer
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    The dataset contains information related to supply chain operations, including orders, products, inventory, suppliers, logistics, and demand. It aims to optimize supply chain efficiency and improve performance through predictive analytics, inventory management, and logistics optimization.

  18. USA Universities offering MIS

    • kaggle.com
    zip
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Rajesh Sahani (2023). USA Universities offering MIS [Dataset]. https://www.kaggle.com/datasets/gauravsahani/usa-universities-offering-mis
    Explore at:
    zip(21780 bytes)Available download formats
    Dataset updated
    Aug 25, 2023
    Authors
    Gaurav Rajesh Sahani
    Description

    Dataset

    This dataset was created by Gaurav Rajesh Sahani

    Contents

  19. COVID-19 Data Visualization Using Python

    • kaggle.com
    zip
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adithya Wijesinghe (2023). COVID-19 Data Visualization Using Python [Dataset]. https://www.kaggle.com/datasets/adithyawijesinghe/covid-19-data
    Explore at:
    zip(1291081 bytes)Available download formats
    Dataset updated
    Apr 21, 2023
    Authors
    Adithya Wijesinghe
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Data visualization using Python (Pandas, Plotly).

    Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.

    The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv

  20. IPL Visualisation using Tableau

    • kaggle.com
    zip
    Updated Oct 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    raj patel (2021). IPL Visualisation using Tableau [Dataset]. https://www.kaggle.com/rajpatelds/ipl-visualisation-using-tableau
    Explore at:
    zip(1599209 bytes)Available download formats
    Dataset updated
    Oct 24, 2021
    Authors
    raj patel
    Description

    Dataset

    This dataset was created by raj patel

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shiv_D24Coder (2023). Powerful Data for Power BI [Dataset]. https://www.kaggle.com/datasets/shivd24coder/powerful-data-for-power-bi
Organization logo

Powerful Data for Power BI

Empowering Business Intelligence: HR Analytics and Sales Analytics for Power BI

Explore at:
zip(907404 bytes)Available download formats
Dataset updated
Aug 28, 2023
Authors
Shiv_D24Coder
Description

Explore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!

Search
Clear search
Close search
Google apps
Main menu