Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Facebook
TwitterSharing my Sample Data (Bellabet) for my Google Analytics capstone course.
With this i was able to get a strong overview of the inner workings of the organization
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Facebook
TwitterThis dataset is a custom reference of Google Analytics field definitions.
It was specifically compiled to enhance datasets like the Google Analytics 360 data from the Google Merchandise Store, which lacks field descriptions in its original BigQuery schema. By providing detailed definitions for each field, this reference aims to improve the interpretability of the data—especially when used by language models or analytics tools that rely on contextual understanding to process and answer queries effectively.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.
Facebook
TwitterCompany Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Google Ads Sales Dataset for Data Analytics Campaigns (Raw & Uncleaned) 📝 Dataset Overview This dataset contains raw, uncleaned advertising data from a simulated Google Ads campaign promoting data analytics courses and services. It closely mimics what real digital marketers and analysts would encounter when working with exported campaign data — including typos, formatting issues, missing values, and inconsistencies.
It is ideal for practicing:
Data cleaning
Exploratory Data Analysis (EDA)
Marketing analytics
Campaign performance insights
Dashboard creation using tools like Excel, Python, or Power BI
📁 Columns in the Dataset Column Name ----- -Description Ad_ID --------Unique ID of the ad campaign Campaign_Name ------Name of the campaign (with typos and variations) Clicks --Number of clicks received Impressions --Number of ad impressions Cost --Total cost of the ad (in ₹ or $ format with missing values) Leads ---Number of leads generated Conversions ----Number of actual conversions (signups, sales, etc.) Conversion Rate ---Calculated conversion rate (Conversions ÷ Clicks) Sale_Amount ---Revenue generated from the conversions Ad_Date------ Date of the ad activity (in inconsistent formats like YYYY/MM/DD, DD-MM-YY) Location ------------City where the ad was served (includes spelling/case variations) Device------------ Device type (Mobile, Desktop, Tablet with mixed casing) Keyword ----------Keyword that triggered the ad (with typos)
⚠️ Data Quality Issues (Intentional) This dataset was intentionally left raw and uncleaned to reflect real-world messiness, such as:
Inconsistent date formats
Spelling errors (e.g., "analitics", "anaytics")
Duplicate rows
Mixed units and symbols in cost/revenue columns
Missing values
Irregular casing in categorical fields (e.g., "mobile", "Mobile", "MOBILE")
🎯 Use Cases Data cleaning exercises in Python (Pandas), R, Excel
Data preprocessing for machine learning
Campaign performance analysis
Conversion optimization tracking
Building dashboards in Power BI, Tableau, or Looker
💡 Sample Analysis Ideas Track campaign cost vs. return (ROI)
Analyze click-through rates (CTR) by device or location
Clean and standardize campaign names and keywords
Investigate keyword performance vs. conversions
🔖 Tags Digital Marketing · Google Ads · Marketing Analytics · Data Cleaning · Pandas Practice · Business Analytics · CRM Data
Facebook
TwitterThe City uses Google Analytics to track data about use of the City's website.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Ongoing analysis of over 650,000 websites with webbkoll. The front page for Italy-related domain names has been accessed through HTTPS or HTTP to gather data about third-party requests, cookies and other privacy-invasive features. Over 80 % of the websites in the sample appear to contain Google Analytics.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set is made available through the Google Analytics Coursera course. This data set is a part of a case study example, meant to showcase skills learned throughout the course.
Facebook
TwitterThis dataset shows the number of page views each day of 2016 for data.edmonton.ca. This data is pulled from our Google Analytics and updated monthly.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Web Analytics Market Size 2025-2029
The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
What will be the Size of the Web Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.
Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.
The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.
How is this Web Analytics Industry segmented?
The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud-based
On-premises
Application
Social media management
Targeting and behavioral analysis
Display advertising optimization
Multichannel campaign analysis
Online marketing
Component
Solutions
Services
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
.
By Deployment Insights
The cloud-based segment is estimated to witness significant growth during the forecast period.
In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting, integra
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2018. For a description of the data collection, processing, and output methods, please see the "methods" section below. Note that the RAMP data model changed in August, 2018 and two sets of documentation are provided to describe data collection and processing before and after the change.
Methods
RAMP Data Documentation – January 1, 2017 through August 18, 2018
Data Collection
RAMP data were downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data from January 1, 2017 through August 18, 2018 were downloaded in one dataset per participating IR. The following fields were downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
Following data processing describe below, on ingest into RAMP an additional field, citableContent, is added to the page level data.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, data are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the data which records whether each URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
Processed data are then saved in a series of Elasticsearch indices. From January 1, 2017, through August 18, 2018, RAMP stored data in one index per participating IR.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.
CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).
For any specified date range, the steps to calculate CCD are:
Filter data to only include rows where "citableContent" is set to "Yes."
Sum the value of the "clicks" field on these rows.
Output to CSV
Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above.
The data in these CSV files include the following fields:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
index: The Elasticsearch index corresponding to page click data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the index field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data follow the format 2018-01_RAMP_all.csv. Using this example, the file 2018-01_RAMP_all.csv contains all data for all RAMP participating IR for the month of January, 2018.
Data Collection from August 19, 2018 Onward
RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.
The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.
Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository
Facebook
TwitterWeekly data from the Google Analytics tag for the Open Data Portal at OpenData.fcgov.com.
Analytics shown are presumed to be non-City-employees, as these data come from computers external to the City network. Each day starting at the first day for which there are data is included, and the URL is either a specific page or "all", specifying that every page in the domain is included. Specific-page URLs are filtered to the main Portal page or data assets, so "all" may capture more pages than specified individually.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterThis foot traffic dataset provides GPS-based mobile movement signals from across South America. It is ideal for retailers, city agencies, advertisers, and real estate professionals seeking insights into how people move through physical locations and urban spaces.
Each record includes:
Device ID (IDFA or GAID) Timestamps (in milliseconds and readable format) GPS coordinates (lat/lon) Country code Horizontal accuracy (85%) Optional IP address, mobile carrier, and device model
Access the data via polygon queries (up to 10,000 tiles), and receive files in CSV, JSON, or Parquet, delivered hourly or daily via API, AWS S3, or Google Cloud. Data freshness is strong (95% delivered within 3 days), with full historical backfill available from September 2024.
This solution supports flexible credit-based pricing and is privacy-compliant under GDPR and CCPA.
Key Attributes:
Custom POI or polygon query capability Backfilled GPS traffic available across LATAM High-resolution movement with daily/hourly cadence GDPR/CCPA-aligned with opt-out handling Delivery via API or major cloud platforms
Use Cases:
Competitive benchmarking across malls or stores Transport and infrastructure planning Advertising attribution for outdoor/DOOH campaigns Footfall modeling for commercial leases City zoning, tourism, and planning investments Telecom & tower planning across developing corridors
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the North America Location Analytics market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 16.32% during the forecast period.By Location Analytics, the gathering and analysation of data regarding certain areas so that insights might be retrieved to make decisions can be termed. In simpler terms, it is basically regarding several technologies and techniques, patterns and trends among people, places, and things for deeper understanding.Factors such as the advanced technological infrastructure, high mobile adoption, and a data-driven culture in North America explain its large share in the global location analytics market. Businesses in North America increasingly make use of location analytics for operations optimization, improving customer experiences, and competitive advantage. For example, retailers use location data to improve personalized offers and store location optimization, while transportation companies use it to optimize routes and improve logistics. Hence, as the volume and complexity of location data grow in volume and complexity, this will further spur innovation in and expansion of the North American location analytics market. Recent developments include: May 2023: SAP SE and Google Cloud are expanding their partnership to include a comprehensive open data offering aimed at simplifying the data landscape and unleashing the power of corporate data; it enables customers to create an end-to-end cloud that brings data from all over the enterprise ecosystem using SAP. Datashpere solution collaboration with Google’s data cloud so that businesses can view their entire data estate in real-time, February 2023: Esri has announced the Release of a New App to View and Analyze Global Land-Cover Easily Changes. The app is set up on the basis of a unique, online version of its global earth cover map using ESA's Sentinel2 satellite imagery. The app is easy to access and leverages the same geographic information system (GIS) technology behind the land-cover map.. Key drivers for this market are: Growing demand for geo-based marketing, Increasing use of location analytics market in the retail sector; Increasing Usage of Internet of Things. Potential restraints include: Lack of Robustness that Enterprises Desire for Their Data Centers, Including IT Management Features, Such as Availability and Security. Notable trends are: Retail Sector to Witness the Growth.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2017. For a description of the data collection, processing, and output methods, please see the "methods" section below.
Methods RAMP Data Documentation – January 1, 2017 through August 18, 2018
Data Collection
RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data from January 1, 2017 through August 18, 2018 were downloaded in one dataset per participating IR. The following fields were downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
Following data processing describe below, on ingest into RAMP an additional field, citableContent, is added to the page level data.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, data are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the data which records whether each URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
Processed data are then saved in a series of Elasticsearch indices. From January 1, 2017, through August 18, 2018, RAMP stored data in one index per participating IR.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.
CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).
For any specified date range, the steps to calculate CCD are:
Filter data to only include rows where "citableContent" is set to "Yes."
Sum the value of the "clicks" field on these rows.
Output to CSV
Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above.
The data in these CSV files include the following fields:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
country: The country from which the corresponding search originated.
device: The device used for the search.
date: The date of the search.
citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
index: The Elasticsearch index corresponding to page click data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the index field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data follow the format 2017-01_RAMP_all.csv. Using this example, the file 2017-01_RAMP_all.csv contains all data for all RAMP participating IR for the month of January, 2017.
References
Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.
Facebook
TwitterThis dataset was created by Tignangshu Chatterjee
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
HR analytics, also referred to as people analytics, workforce analytics, or talent analytics, involves gathering together, analyzing, and reporting HR data. It is the collection and application of talent data to improve critical talent and business outcomes. It enables your organization to measure the impact of a range of HR metrics on overall business performance and make decisions based on data. They are primarily responsible for interpreting and analyzing vast datasets.
Download the data CSV files here ; https://drive.google.com/drive/folders/18mQalCEyZypeV8TJeP3SME_R6qsCS2Og
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Version update: The originally uploaded versions of the CSV files in this dataset included an extra column, "Unnamed: 0," which is not RAMP data and was an artifact of the process used to export the data to CSV format. This column has been removed from the revised dataset. The data are otherwise the same as in the first version.
The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2020. For a description of the data collection, processing, and output methods, please see the "methods" section below.
Methods Data Collection
RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).
Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.
The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.
More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en
Data Processing
Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."
The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.
Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.
About Citable Content Downloads
Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.
CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).
For any specified date range, the steps to calculate CCD are:
Filter data to only include rows where "citableContent" is set to "Yes."
Sum the value of the "clicks" field on these rows.
Output to CSV
Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above. Also as noted above, daily data are downloaded for each IR in two sets which cannot be combined. One dataset includes the URLs of items that appear in SERP. The second dataset is aggregated by combination of the country from which a search was conducted and the device used.
As a result, two CSV datasets are provided for each month of published data:
page-clicks:
The data in these CSV files correspond to the page-level data, and include the following fields:
url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
index: The Elasticsearch index corresponding to page click data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data end with “page-clicks”. For example, the file named 2020-01_RAMP_all_page-clicks.csv contains page level click data for all RAMP participating IR for the month of January, 2020.
country-device-info:
The data in these CSV files correspond to the data aggregated by country from which a search was conducted and the device used. These include the following fields:
country: The country from which the corresponding search originated.
device: The device used for the search.
impressions: The number of times the URL appears within the SERP.
clicks: The number of clicks on a URL which took users to a page outside of the SERP.
clickThrough: Calculated as the number of clicks divided by the number of impressions.
position: The position of the URL within the SERP.
date: The date of the search.
index: The Elasticsearch index corresponding to country and device access information data for a single IR.
repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
Filenames for files containing these data end with “country-device-info”. For example, the file named 2020-01_RAMP_all_country-device-info.csv contains country and device data for all participating IR for the month of January, 2020.
References
Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?