Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.
Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.
EXPLORE TIMELAPSEThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.
EXPLORE DATASETSThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.
EXPLORE THE APIUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.
LEARN ABOUT THE CODE EDITORScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.
SEE CASE STUDIESEarth Map (earthmap.org) is a web-based FAO-Google tool for quick multi-temporal analysis of environment and climate parameters for evidence-based policies integrating cloud technologies and freely available datasets. Earth Map can analyse and display data that are already present in Google Earth Engine (earthengine.google.com) as other freely available datasets that have been gathered, processed and uploaded to the platform.
Data domains range from temperature to precipitation, fires, population, vegetation, evapotranspiration, water, land use/cover, elevation, soil, satellite images, etc. Most of the data include multi-temporal series allowing to have a time machine for several environmental parameters.
Earth Map aims to lower the access to some feature of Earth Engine through a simple graphical interface with drop-down menus. Any user can run environmental and climatic analysis on their area of interest and in a matter of few seconds.
https://data.apps.fao.org/catalog/dataset/a7116f30-254f-43c3-85ce-6756b4dd5259/resource/2d9c30c0-b593-4879-9096-1b3e87cc248a/download/earth-map-screenshot.png" alt="EarthMap Screenshot">
Users without prior experience in GIS or remote sensing, but with knowledge of the land to be analysed, can use Earth Map to produce images, tables and statistics describing the environmental and climatic context and history of an area. Therefore, Earth Map can play a strategic role in providing guidance in project design but also in project monitoring and final evaluation.
Even in countries where data appear to be scarce, the remote-sensing data in Earth Engine are integrated with additional freely available datasets to provide timely analysis, customized for the objectives of the projects. The tool allows to gather an in-depth multi-temporal perspective of the environmental and climatic conditions with a focus on the study of the anomalies and their frequency.
Earth Map has been developed in the framework of the FAO-Google partnership, in synergy with the FAO Hand-in-Hand Geospatial Platform and thanks to the support of the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). The team behind Earth Map is the same team that developed Collect Earth (www.openforis.org/tools/collect-earth.html) and it is still maintaining it; Collect Earth is another FAO-Google application to produce detailed statistics of land use, land use change and forest through a point sampling approach and freely available remote sensing data.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">
SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.
National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.
The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">
MSZSI: Multi-Scale Zonal Statistics [AgriClimate] Inventory
--------------------------------------------------------------------------------------
MSZSI is a data extraction tool for Google Earth Engine that aggregates time-series remote sensing information to multiple administrative levels using the FAO GAUL data layers. The code at the bottom of this page (metadata) can be pasted into the Google Earth Engine JavaScript code editor and ran at https://code.earthengine.google.com/.
Please refer to the associated publication:
Peter, B.G., Messina, J.P., Breeze, V., Fung, C.Y., Kapoor, A. and Fan, P., 2024. Perspectives on modifiable spatiotemporal unit problems in remote sensing of agriculture: evaluating rice production in Vietnam and tools for analysis. Frontiers in Remote Sensing, 5, p.1042624.
https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2024.1042624
Input options:
[1] Country of interest
[2] Start and end year
[3] Start and end month
[4] Option to mask data to a specific land-use/land-cover type
[5] Land-use/land-cover type code from CGLS LULC
[6] Image collection for data aggregation
[7] Desired band from the image collection
[8] Statistics type for the zonal aggregations
[9] Statistic to use for annual aggregation
[10] Scaling options
[11] Export folder and label suffix
Output: Two CSVs containing zonal statistics for each of the FAO GAUL administrative level boundaries
Output fields: system:index, 0-ADM0_CODE, 0-ADM0_NAME, 0-ADM1_CODE, 0-ADM1_NAME, 0-ADMN_CODE, 0-ADMN_NAME, 1-AREA_PERCENT_LULC, 1-AREA_SQM_LULC, 1-AREA_SQM_ZONE, 2-X_2001, 2-X_2002, 2-X_2003, ..., 2-X_2020, .geo
PREPROCESSED DATA DOWNLOAD
The datasets available for download contain zonal statistics at 2 administrative levels (FAO GAUL levels 1 and 2). Select countries from Southeast Asia and Sub-Saharan Africa (Cambodia, Indonesia, Lao PDR, Myanmar, Philippines, Thailand, Vietnam, Burundi, Kenya, Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, Zimbabwe) are included in the current version, with plans to extend the dataset to contain global metrics. Each zip file is described below and two example NDVI tables are available for preview.
Key: [source, data, units, temporal range, aggregation, masking, zonal statistic, notes]
Currently available:
MSZSI-V2_V-NDVI-MEAN.tar: [NASA-MODIS, NDVI, index, 2001–2020, annual mean, agriculture, mean, n/a]
MSZSI-V2_T-LST-DAY-MEAN.tar: [NASA-MODIS, LST Day, °C, 2001–2020, annual mean, agriculture, mean, n/a]
MSZSI-V2_T-LST-NIGHT-MEAN.tar: [NASA-MODIS, LST Night, °C, 2001–2020, annual mean, agriculture, mean, n/a]
MSZSI-V2_R-PRECIP-SUM.tar: [UCSB-CHG-CHIRPS, Precipitation, mm, 2001–2020, annual sum, agriculture, mean, n/a]
MSZSI-V2_S-BDENS-MEAN.tar: [OpenLandMap, Bulk density, g/cm3, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-ORGC-MEAN.tar: [OpenLandMap, Organic carbon, g/kg, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-PH-MEAN.tar: [OpenLandMap, pH in H2O, pH, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-WATER-MEAN.tar: [OpenLandMap, Soil water, % at 33kPa, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-SAND-MEAN.tar: [OpenLandMap, Sand, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-SILT-MEAN.tar: [OpenLandMap, Silt, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_S-CLAY-MEAN.tar: [OpenLandMap, Clay, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200]
MSZSI-V2_E-ELEV-MEAN.tar: [MERIT, [elevation, slope, flowacc, HAND], [m, degrees, km2, m], static, n/a, agriculture, mean, n/a]
Coming soon
MSZSI-V2_C-STAX-MEAN.tar: [OpenLandMap, Soil taxonomy, category, static, n/a, agriculture, area sum, n/a]
MSZSI-V2_C-LULC-MEAN.tar: [CGLS-LC100-V3, LULC, category, 2015–2019, mode, none, area sum, n/a]
Data sources:
/*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// MSZSI: Multi-Scale Zonal Statistics Inventory Authors: Brad G. Peter, Department of Geography, University of Alabama Joseph Messina, Department of Geography, University of Alabama Austin Raney, Department of Geography, University of Alabama Rodrigo E. Principe, AgriCircle AG Peilei Fan, Department of Geography, Environment, and Spatial Sciences, Michigan State University Citation: Peter, Brad; Messina, Joseph; Raney, Austin; Principe, Rodrigo; Fan, Peilei, 2021, 'MSZSI: Multi-Scale Zonal Statistics Inventory', https://doi.org/10.7910/DVN/YCUBXS, Harvard Dataverse, V# SEAGUL: Southeast Asia Globalization, Urbanization, Land and Environment Changes http://seagul.info/ https://lcluc.umd.edu/projects/divergent-local-responses-globalization-urbanization-land-transition-and-environmental This project was made possible by the the NASA Land-Cover/Land-Use Change Program (Grant #: 80NSSC20K0740)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land cover is the physical evidence on the surface of the Earth. As the cause and result of global environmental change, land cover change (LCC) influences the global energy balance and biogeochemical cycles. Continuous and dynamic monitoring of global LC is urgently needed. Effective monitoring and comprehensive analysis of LCC at the global scale are rare. With the latest version of GLASS (The Global Land Surface Satellite) CDRs (Climate Data Records) from 1982 to 2015, we built the first record of 34-year long annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the Google Earth Engine (GEE) platform. Compared to earlier global LC products, GLASS-GLC is characterized by high consistency, more detailed, and longer temporal coverage. The average overall accuracy for the 34 years each with 7 classes, including cropland, forest, grassland, shrubland, tundra, barren land, and snow/ice, is 82.81 % based on 2431 test sample units. We implemented a systematic uncertainty analysis and carried out a comprehensive spatiotemporal pattern analysis. Significant changes at various scales were found, including barren land loss and cropland gain in the tropics, forest gain in northern hemisphere and grassland loss in Asia, etc. A global quantitative analysis of human factors showed that the average human impact level in areas with significant LCC was about 25.49 %. The anthropogenic influence has a strong correlation with the noticeable vegetation gain, especially for forest. Based on GLASS-GLC, we can conduct long-term LCC analysis, improve our understanding of global environmental change, and mitigate its negative impact. GLASS-GLC will be further applied in Earth system modeling to facilitate research on global carbon and water cycling, vegetation dynamics, and climate change. This GLASS-GLC data set is related to the paper at doi:10.5194/essd-2019-23. It consists of one readme file and 34 GeoTIFF files of annual 5 km global maps from 1982 to 2015 in a WGS 84 projection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data are associated with an article published in Environmental Research Letters in 2020 (currently in revision). The aim of the paper was to quantify the extent of mangrove damage resulting from the 2017 hurricane season in the Western Atlantic hurricane basin. Mangrove damage was quantified with changes in NDVI calculated from satellite imagery from the Landsat 7 and 8 satellites using Google Earth Engine. Details regarding methods and Earth Engine code can be found in the supplemental information with the manuscript.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset includes the images (NIR-R-G bands for Landsat-8 or NICFI PlanetScope), auxiliary data (infrared, NCEP, forest gain, OpenStreetMap, SRTM, GFW), and data about forest loss (Global Forest Change) used to train, validate and test a model to classify direct deforestation drivers in Cameroon. The creation of this dataset follows the same structure as: Labelled dataset to classify direct deforestation drivers in Cameroon but with a different set of bands.
For more details about how this dataset has been created and can be used, please refer to our paper and code: https://github.com/aedebus/Cam-ForestNet. The paper, describing the generation of RGB images, can be found here: https://www.nature.com/articles/s41597-024-03384-z.
Citation: Debus, A. et al. A labelled dataset to classify direct deforestation drivers from Earth Observation imagery in Cameroon. Sci Data 11, 564 (2024).
Description of the files and images
Details about the auxiliary data
Details about Global Forest Change
For each image, there is a corresponding 'forest_loss_region' .pkl file delimiting a forest loss region polygon from Global Forest Change (GFC). GFC consists of annual maps of forest cover loss with a 30-m resolution.
License
The NICFI PlanetScope images fall under the same license as the NICFI data program license agreement (data in 'my_examples_planet_nir.zip', 'my_examples_planet_nir_biannual.zip': subfolders '[coordinates]'>'images'>'visible').
OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF) (data in all 'my_examples' folders: subfolders '[coordinates]'>'auxiliary'>'closest_city.json'/'closest_street.json'). The documentation is licensed under the Creative Commons Attribution-ShareAlike 2.0 license (CC BY-SA 2.0).
The rest of the data is under a Creative Commons Attribution 4.0 International License. The data has been transformed following the code that can be found via this link: https://github.com/aedebus/Cam-ForestNet (in 'prepare_files').
Click to add a brief description of the dataset (Markdown and LaTeX enabled). Abstract This dataset comprises approximately 7,100 satellite images paired with corresponding demographic and travel behavior data spanning 2012-2023 (excluding 2020) across United States counties. The satellite imagery consists of 256×256 pixel Landsat 8 Collection 2 Level 2 surface reflectance composites covering 10 km² areas around county centroids, processed to create cloud-free annual median representations. Demographic data includes 25 key variables from the U.S. Census Bureau's American Community Survey (ACS) 1-year estimates, encompassing population statistics, age distributions, racial composition, and educational attainment levels. Travel behavior metrics capture transportation modes, commute patterns, vehicle availability, and temporal travel characteristics for counties with populations exceeding 65,000. This multimodal spatiotemporal dataset enables research at the intersection of remote sensing, urban planning, and transportation analysis, providing a unique resource for studying the co-evolution of built environments, demographic patterns, and mobility behaviors over an 11-year period. The dataset supports applications in predictive modeling, urban development forecasting, transportation planning, and socioeconomic analysis using machine learning and computer vision techniques. Provide: Satellite Imagery Source: Landsat 8 Collection 2 via Google Earth Engine Format: RGB PNG images (256×256 pixels) Processing: Annual median composites, cloud-filtered Naming Convention: {state_FIPS}{county_FIPS}{year}.png State FIPS: 1-56 (standard federal codes) County FIPS: varies by state Examples: 1_1_2012.png (Alabama, Autauga County, 2012) 6_37_2019.png (California, Los Angeles County, 2019) 36_61_2023.png (New York, New York County, 2023) Demographics Source: U.S. Census Bureau ACS 1-year estimates Features: 27 demographic and socioeconomic indicators including: Population demographics (age, gender) Race and ethnicity distribution Economic indicators (income, inequality) Educational attainment
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.
Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.
EXPLORE TIMELAPSEThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.
EXPLORE DATASETSThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.
EXPLORE THE APIUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.
LEARN ABOUT THE CODE EDITORScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.
SEE CASE STUDIES