100+ datasets found
  1. GEODATA TOPO 250K Series 3 (Google Earth format)

    • ecat.ga.gov.au
    • researchdata.edu.au
    Updated Jan 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2007). GEODATA TOPO 250K Series 3 (Google Earth format) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-cfc7-7506-e044-00144fdd4fa6
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jan 1, 2007
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.

    GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.

    GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.

    Product Specifications

    Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation

    Coverage: National (Powerlines not available in South Australia)

    Currency: Data has a currency of less than five years for any location

    Coordinates: Geographical

    Datum: Geocentric Datum of Australia (GDA94)

    Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB

    Release Date: 26 June 2006

  2. Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:10,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from a East Carolina University unpublished map and digital data by Ames and Riggs (2008) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-10000-scale-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    North Carolina, Cape Lookout
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:10,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. A

    Data from: Google Earth Engine (GEE)

    • data.amerigeoss.org
    • amerigeo.org
    • +1more
    esri rest, html
    Updated Nov 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2018). Google Earth Engine (GEE) [Dataset]. https://data.amerigeoss.org/dataset/google-earth-engine-gee
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Nov 28, 2018
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    Meet Earth Engine

    Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.

    Satellite imagerySATELLITE IMAGERY+Your algorithmsYOUR ALGORITHMS+Causes you care aboutREAL WORLD APPLICATIONS
    LEARN MORE
    GLOBAL-SCALE INSIGHT

    Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.

    EXPLORE TIMELAPSE
    READY-TO-USE DATASETS

    The public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.

    EXPLORE DATASETS
    SIMPLE, YET POWERFUL API

    The Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.

    EXPLORE THE API
    Google Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.
    CONVENIENT TOOLS

    Use our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.

    LEARN ABOUT THE CODE EDITOR
    SCIENTIFIC AND HUMANITARIAN IMPACT

    Scientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.

    SEE CASE STUDIES
    READY TO BE PART OF THE SOLUTION?SIGN UP NOW
    TERMS OF SERVICE PRIVACY ABOUT GOOGLE

  4. Dynamic World V1

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google, Dynamic World V1 [Dataset]. http://doi.org/10.1038/s41597-022-01307-4
    Explore at:
    Dataset provided by
    Googlehttp://google.com/
    World Resources Institute
    Time period covered
    Jun 27, 2015 - Mar 26, 2025
    Area covered
    Earth
    Description

    Dynamic World is a 10m near-real-time (NRT) Land Use/Land Cover (LULC) dataset that includes class probabilities and label information for nine classes. Dynamic World predictions are available for the Sentinel-2 L1C collection from 2015-06-27 to present. The revisit frequency of Sentinel-2 is between 2-5 days depending on latitude. Dynamic World predictions are generated for Sentinel-2 L1C images with CLOUDY_PIXEL_PERCENTAGE <= 35%. Predictions are masked to remove clouds and cloud shadows using a combination of S2 Cloud Probability, Cloud Displacement Index, and Directional Distance Transform. Images in the Dynamic World collection have names matching the individual Sentinel-2 L1C asset names from which they were derived, e.g: ee.Image('COPERNICUS/S2/20160711T084022_20160711T084751_T35PKT') has a matching Dynamic World image named: ee.Image('GOOGLE/DYNAMICWORLD/V1/20160711T084022_20160711T084751_T35PKT'). All probability bands except the "label" band collectively sum to 1. To learn more about the Dynamic World dataset and see examples for generating composites, calculating regional statistics, and working with the time series, see the Introduction to Dynamic World tutorial series. Given Dynamic World class estimations are derived from single images using a spatial context from a small moving window, top-1 "probabilities" for predicted land covers that are in-part defined by cover over time, like crops, can be comparatively low in the absence of obvious distinguishing features. High-return surfaces in arid climates, sand, sunglint, etc may also exhibit this phenomenon. To select only pixels that confidently belong to a Dynamic World class, it is recommended to mask Dynamic World outputs by thresholding the estimated "probability" of the top-1 prediction.

  5. Landsat 5 Satellite Imagery for selected areas of Great Barrier Reef and...

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    Updated Aug 20, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2014). Landsat 5 Satellite Imagery for selected areas of Great Barrier Reef and Torres Strait (NERP TE 13.1, eAtlas AIMS, source: NASA) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/bc667743-3f77-4533-82a7-5b45c317dd89
    Explore at:
    www:link-1.0-http--link, www:link-1.0-http--downloaddata, www:link-1.0-http--relatedAvailable download formats
    Dataset updated
    Aug 20, 2014
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Time period covered
    Sep 1, 1988 - Jul 1, 2010
    Area covered
    Description

    This dataset contains Landsat 5 imagery for selected areas of Queensland, currently Torres Strait and around Lizard Island and Cape Tribulation.

    This collection was made as a result of the development of the Torres Strait Features dataset. It includes a number (typically 4 - 8) of selected Landsat images for each scene from the entire Landsat 5 archive. These images were selected for having low cloud cover and clear water. The aim of this collection was to allow investigation of the marine features.

    The complete catalogue of Landsat 5 for scenes 96_70, 96_71, 97_67, 97_68, 98_66, 98_67, 98_68_99_66, 99_67 and 99_68 were downloaded from the Google Earth Engine site ( https://console.developers.google.com/storage/earthengine-public/landsat/ ). The images were then processed into low resolution true colour using GDAL. They were then reviewed for picture clarity and the best ones were selected and processed at full resolution to be part of this collection.

    The true colour conversion was achieved by applying level adjustment to each channel to ensure that the tonal scaling of each channel was adjusted to give a good overall colour balance. This effectively set the black point of the channel and the gain. This adjustment was applied consistently to all images.

    • Red: Channel B3, Black level 8, White level 58
    • Green: Channel B2, Black level 10, White level 55
    • Blue: Channel B1, Black level 32, White level 121

    Note: A constant level adjustment was made to the images regardless of the time of the year that the images were taken. As a result images in the summer tend to be brighter than those in the winter.

    After level adjustment the three channels were merged into a single colour image using gdal_merge. The black surround on the image was then made transparent using the GDAL nearblack command.

    This collection consists of 59 images saved as 4 channel (Red, Green, Blue, Alpha) GeoTiff images with LZW compression (lossless) and internal overviews with a WGS 84 UTM 54N projection.

    Each of the individual images can be downloaded from the eAtlas map client (Overlay layers: eAtlas/Imagery Base Maps Earth Cover/Landsat 5) or as a collection of all images for each scene.

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data\NERP-TE\13.1_eAtlas\QLD_NERP-TE-13-1_eAtlas_Landsat-5_1988-2011

  6. Training: 4. Mapping with Google Earth Pro

    • sudan-uneplive.hub.arcgis.com
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2020). Training: 4. Mapping with Google Earth Pro [Dataset]. https://sudan-uneplive.hub.arcgis.com/documents/dfe5e722e15b4c4e9f3d9c346067d92f
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Description

    This training, developed by UNEP, covers the basic of Google Earth Pro, including how to search for locations and create data. Google Earth Pro is a useful tool for participatory mapping processes.

  7. p

    Google Earth Engine

    • pigma.org
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Google Earth Engine [Dataset]. https://www.pigma.org/geonetwork/srv/search?type=software
    Explore at:
    Dataset updated
    Aug 31, 2022
    Description

    Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers, and developers use Earth Engine to detect changes, map trends, and quantify differences on the Earth's surface. Earth Engine is now available for commercial use, and remains free for academic and research use.

  8. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  9. Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado (NPS, GRD, GRI, GRSA, GSAM digital map) adapted from U.S. Geological Survey Miscellaneous Field Studies Maps by Lindsey, Johnson, Bruce, Soulliere, Flores and Hafner (1985 to 1991) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-geologic-gis-map-of-parts-of-great-sand-dunes-national-park-and-preser
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Sangre de Cristo Mountains, Colorado
    Description

    The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.

  10. Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado (NPS, GRD, GRI, ROMO, ROMO digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Braddock and Cole (1990) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-rocky-mountain-national-park-and-vicinity-colorado-nps-grd-gri
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Rocky Mountains, Colorado
    Description

    The Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (romo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (romo_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (romo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (romo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (romo_geology_metadata_faq.pdf). Please read the romo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (romo_geology_metadata.txt or romo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. n

    Google Earth Engine Burnt Area Map (GEEBAM) | Dataset | SEED

    • datasets.seed.nsw.gov.au
    Updated Jan 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Google Earth Engine Burnt Area Map (GEEBAM) | Dataset | SEED [Dataset]. https://datasets.seed.nsw.gov.au/dataset/google-earth-engine-burnt-area-map-geebam
    Explore at:
    Dataset updated
    Jan 29, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. Fire Extent and Severity Mapping (FESM) data should be used for accurate information on fire severity and loss of biomass in relation to bushfires. The intention of this dataset was to provide a rapid assessment of fire impact.

  12. AIMS Google Earth Catalogue

    • researchdata.edu.au
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2024). AIMS Google Earth Catalogue [Dataset]. https://researchdata.edu.au/aims-google-earth-catalogue/1314769
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Authors
    Australian Institute of Marine Science (AIMS)
    Description

    The AIMS Google Earth Catalogue contains lists of KML/KMZ files, created by AIMS staff, that can be loaded into Google Earth and some other 3D programs. Maps may be used as is, or customized in Google Earth for your specific purposes.Files in the cataloque have been created for a variety of purposes such as providing high resolution imagery of islands and reefs and mapping study sites. Staff are encouraged to add their own files to the catalogue. The application contains instructions to how to add and document files to share internally. If you are familiar with RSS Feeds, Syndication or News Feeds, you might be interested in adding the RSS URL to your feed reader in your web browser or email client. The AIMS Google Earth Catalogue is an initiative of the AIMS Data Centre to provide a facility for sharing KML/KMZ files between AIMS staff.

  13. f

    Google Earth Engine code

    • springernature.figshare.com
    • explore.openaire.eu
    zip
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow (2023). Google Earth Engine code [Dataset]. http://doi.org/10.6084/m9.figshare.8980547.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Google Earth Engine used to compute the NDVI statistics added to Globe-LFMC. The input of the program is a point shapefile (“samplePlotsShapefile”, extensions .cpg, .dbf, .prj, .shp, .shx) representing the location of each Globe-LFMC site. This shapefile is available as additional data in figshare (see Code Availability). To run this GEE code the shapefile needs to be uploaded into the GEE Assets and, then, imported into the Code Editor with the name “plots” (without quotation marks).Google Earth Engine codeChange Notice - GEE_script_for_GlobeLFMC_ndvi_stats_v2.jsThe following acknowledgements have been added at the beginning of the code: “Portions of the following code are modifications based on work created and shared by Google in Earth Engine Data Catalog and Earth Engine Guides under the Apache 2.0 License. https://www.apache.org/licenses/LICENSE-2.0”Change Notice - samplePlotsShapefile_v2The shapefile describing the database sites has been corrected and updated with the correct coordinates.

  14. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR)

    • developers.google.com
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Union/ESA/Copernicus (2020). Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR) [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    European Space Agencyhttp://www.esa.int/
    Time period covered
    Mar 28, 2017 - Mar 27, 2025
    Area covered
    Description

    After 2022-01-25, Sentinel-2 scenes with PROCESSING_BASELINE '04.00' or above have their DN (value) range shifted by 1000. The HARMONIZED collection shifts data in newer scenes to be in the same range as in older scenes. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies, including the …

  15. H

    MODIS product version comparison application for Google Earth Engine

    • dataverse.harvard.edu
    Updated Mar 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    B. G. Peter; J. P. Messina (2021). MODIS product version comparison application for Google Earth Engine [Dataset]. http://doi.org/10.7910/DVN/OGTUVN
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 6, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    B. G. Peter; J. P. Messina
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OGTUVNhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OGTUVN

    Description

    MODIS product version comparison application for Google Earth Engine This is associated an article published by IEEE in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing on 20 March 2019, available online at doi.org/10.1109/JSTARS.2019.2901404. Reference: Peter, B.G. and Messina, J.P., 2019. Errors in Time-Series Remote Sensing and an Open Access Application for Detecting and Visualizing Spatial Data Outliers Using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4), pp.1165-1174. Link to manuscript https://ieeexplore.ieee.org/abstract/document/8672086 Interactive Google Earth Engine Application https://cartoscience.users.earthengine.app/view/versions Google Earth Engine Code // Version 1.1 Map.setCenter(30, 20, 2.5).setOptions('HYBRID').style().set('cursor', 'crosshair'); var countryList = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017'); var stats = function(year) { Map.layers().reset(); var countrySelected = app.country.countrySelect.getValue(); var region = countryList.filterMetadata('Country', 'equals', countrySelected).geometry(); var versionOne = app.inputBox.productBox.getValue(); var versionTwo = app.inputBox.productBoxTwo.getValue(); var band = app.inputBox.bandBox.getValue(); var bandTwo = app.inputBox.bandBoxTwo.getValue(); if (app.inputBox.customCheckbox.getValue() === true) { var latCoord = ee.Number.parse(app.inputBox.latCoordBox.getValue()).getInfo(); var lonCoord = ee.Number.parse(app.inputBox.lonCoordBox.getValue()).getInfo(); var distBuffer = ee.Number.parse(app.inputBox.distBox.getValue()).getInfo(); var distNum = distBuffer*1000; region = ee.Geometry.Point([lonCoord,latCoord]).buffer(distNum).bounds(); } var modisCollectionOne = ee.ImageCollection(versionOne).select(band); var modisCollectionTwo = ee.ImageCollection(versionTwo).select(bandTwo); var imageOne = modisCollectionOne.filter(ee.Filter.calendarRange(year,year,'year')).mean(); var imageTwo = modisCollectionTwo.filter(ee.Filter.calendarRange(year,year,'year')).mean(); var abs = imageOne.select(band).subtract(imageTwo.select(bandTwo)).abs().rename("difference"); var percentilesOne = imageOne.reduceRegion({ reducer: ee.Reducer.percentile([10,90]), geometry: region, scale: 250, maxPixels: 1e13 }); var percentilesTwo = imageTwo.reduceRegion({ reducer: ee.Reducer.percentile([10,90]), geometry: region, scale: 250, maxPixels: 1e13 }); var percentilesAbs = abs.reduceRegion({ reducer: ee.Reducer.percentile([10,90]), geometry: region, scale: 250, maxPixels: 1e13 }); var minOne = ee.Number(percentilesOne.get(band+'_p10')).getInfo(); var maxOne = ee.Number(percentilesOne.get(band+'_p90')).getInfo(); var minTwo = ee.Number(percentilesTwo.get(bandTwo+'_p10')).getInfo(); var maxTwo = ee.Number(percentilesTwo.get(bandTwo+'_p90')).getInfo(); var minBoth = Math.min(minOne,minTwo); var maxBoth = Math.max(maxOne,maxTwo); var minAbs = ee.Number(percentilesAbs.get('difference_p10')).getInfo(); var maxAbs = ee.Number(percentilesAbs.get('difference_p90')).getInfo(); var grayscale = ['f7f7f7', 'cccccc', '969696', '525252','141414']; Map.addLayer(imageOne.select(band).rename(band+'_'+versionOne).clip(region),{min: minBoth, max: maxBoth, palette: grayscale},band+' • '+versionOne, false); Map.addLayer(imageTwo.select(bandTwo).rename(bandTwo+'_'+versionTwo).clip(region),{min: minBoth, max: maxBoth, palette: grayscale},band+' • '+versionTwo, false); Map.addLayer(abs.clip(region),{min: minAbs, max: maxAbs, palette: grayscale},"Difference"); var options = { title: year+' Histogram', fontSize: 11, legend: {position: 'none'}, series: {0: {color: '7100AA'}} }; var histogram = ui.Chart.image.histogram(imageOne, region, 10000).setOptions(options); var optionsTwo = { title: year+' Histogram', fontSize: 11, legend: {position: 'none'}, series: {0: {color: '0071AA'}} }; var histogramTwo = ui.Chart.image.histogram(imageTwo, region, 10000).setOptions(optionsTwo); var clickLabel = ui.Label('Click map to get pixel time-series', {fontWeight: '300', fontSize: '13px', margin: '10px 10px 15px 30px'}); var clickLabelTwo = ui.Label('Click map to get pixel time-series', {fontWeight: '300', fontSize: '13px', margin: '10px 10px 15px 30px'}); app.rootPanels.panelOne.widgets().set(1, ui.Label('temp')); app.rootPanels.panelTwo.widgets().set(1, ui.Label('temp')); app.rootPanels.panelOne.widgets().set(1, histogram); app.rootPanels.panelOne.widgets().set(2, clickLabel); app.rootPanels.panelTwo.widgets().set(1, histogramTwo); app.rootPanels.panelTwo.widgets().set(2, clickLabelTwo); Map.centerObject(region); Map.setOptions('HYBRID'); Map.onClick(function(coords) { var point = ee.Geometry.Point(coords.lon, coords.lat); var dot = ui.Map.Layer(point, {color: 'AA0000'}, "Inspector"); Map.layers().set(3, dot); var clickChart = ui.Chart.image.series(modisCollectionOne, point, ee.Reducer.mean(), 10000); clickChart.setOptions({ title: 'Pixel | X: ' + coords.lon.toFixed(2)+', '+'Y: ' + coords.lat.toFixed(2),...

  16. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. H

    Google Earth Engine code to generate water coverage data, Schaffer-Smith et...

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Sep 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Margaret Swift (2022). Google Earth Engine code to generate water coverage data, Schaffer-Smith et al 2022 [Dataset]. https://www.hydroshare.org/resource/01c98336686a44d8892d57e7e2637ccb
    Explore at:
    zip(64.6 KB)Available download formats
    Dataset updated
    Sep 18, 2022
    Dataset provided by
    HydroShare
    Authors
    Margaret Swift
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 1, 2017 - Jul 31, 2020
    Description

    Surface water in arid regions is essential to many organisms including large mammals of conservation concern. For many regions little is known about the extent, ecology and hydrology of ephemeral waters, because they are challenging to map given their ephemeral nature and small sizes. Our goal was to advance surface water knowledge by mapping and monitoring ephemeral water from the wet to dry seasons across the Kavango-Zambezi (KAZA) transfrontier conservation area of southern Africa (300,000 km2). We mapped individual waterholes for six time points each year from mid-2017 to mid-2020, and described their presence, extent, duration, variability, and recurrence. We further analyzed a wide range of physical and landscape aspects of waterhole locations, including soils, geology, and topography, to climate and soil moisture. We identified 2.1 million previously unmapped ephemeral waterholes (85-89% accuracy) that seasonally extend across 23.5% of the study area. We confirmed a distinct ‘blue wave’ with ephemeral water across the region peaking at the end of the rainy season. We observed a wide range of waterhole types and sizes, with large variances in seasonal and interannual hydrology. We found that ephemeral surface water spatiotemporal patterns were was associated with soil type; loam soils were most likely to hold water for longer periods in the study area. From the wettest time period to the driest, there was a ~44,000 km2 (62%) decrease in ephemeral water extent across the region—these dramatic seasonal fluctuations have implications for wildlife movement. A warmer and drier climate, expected human population growth, and associated agricultural expansion and development may threaten these sensitive and highly variable water resources and the wildlife that depend on them.

    This contains Google Earth Engine code to generate water coverage data for Schaffer-Smith et al 2022.

  19. Data from: Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB...

    • zenodo.org
    • observatorio-cientifico.ua.es
    text/x-python, zip
    Updated Jul 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yassir Benhammou; Yassir Benhammou; Domingo Alcaraz-Segura; Domingo Alcaraz-Segura; Emilio Guirado; Emilio Guirado; Rohaifa Khaldi; Rohaifa Khaldi; Siham Tabik; Siham Tabik (2023). Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB imagery annotated for global land use/land cover mapping with deep learning (License CC BY 4.0) [Dataset]. http://doi.org/10.5281/zenodo.6941662
    Explore at:
    zip, text/x-pythonAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yassir Benhammou; Yassir Benhammou; Domingo Alcaraz-Segura; Domingo Alcaraz-Segura; Emilio Guirado; Emilio Guirado; Rohaifa Khaldi; Rohaifa Khaldi; Siham Tabik; Siham Tabik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sentinel2GlobalLULC is a deep learning-ready dataset of RGB images from the Sentinel-2 satellites designed for global land use and land cover (LULC) mapping. Sentinel2GlobalLULC v2.1 contains 194,877 images in GeoTiff and JPEG format corresponding to 29 broad LULC classes. Each image has 224 x 224 pixels at 10 m spatial resolution and was produced by assigning the 25th percentile of all available observations in the Sentinel-2 collection between June 2015 and October 2020 in order to remove atmospheric effects (i.e., clouds, aerosols, shadows, snow, etc.). A spatial purity value was assigned to each image based on the consensus across 15 different global LULC products available in Google Earth Engine (GEE).

    Our dataset is structured into 3 main zip-compressed folders, an Excel file with a dictionary for class names and descriptive statistics per LULC class, and a python script to convert RGB GeoTiff images into JPEG format. The first folder called "Sentinel2LULC_GeoTiff.zip" contains 29 zip-compressed subfolders where each one corresponds to a specific LULC class with hundreds to thousands of GeoTiff Sentinel-2 RGB images. The second folder called "Sentinel2LULC_JPEG.zip" contains 29 zip-compressed subfolders with a JPEG formatted version of the same images provided in the first main folder. The third folder called "Sentinel2LULC_CSV.zip" includes 29 zip-compressed CSV files with as many rows as provided images and with 12 columns containing the following metadata (this same metadata is provided in the image filenames):

    • Land Cover Class ID: is the identification number of each LULC class
    • Land Cover Class Short Name: is the short name of each LULC class
    • Image ID: is the identification number of each image within its corresponding LULC class
    • Pixel purity Value: is the spatial purity of each pixel for its corresponding LULC class calculated as the spatial consensus across up to 15 land-cover products
    • GHM Value: is the spatial average of the Global Human Modification index (gHM) for each image
    • Latitude: is the latitude of the center point of each image
    • Longitude: is the longitude of the center point of each image
    • Country Code: is the Alpha-2 country code of each image as described in the ISO 3166 international standard. To understand the country codes, we recommend the user to visit the following website where they present the Alpha-2 code for each country as described in the ISO 3166 international standard:https: //www.iban.com/country-codes
    • Administrative Department Level1: is the administrative level 1 name to which each image belongs
    • Administrative Department Level2: is the administrative level 2 name to which each image belongs
    • Locality: is the name of the locality to which each image belongs
    • Number of S2 images : is the number of found instances in the corresponding Sentinel-2 image collection between June 2015 and October 2020, when compositing and exporting its corresponding image tile

    For seven LULC classes, we could not export from GEE all images that fulfilled a spatial purity of 100% since there were millions of them. In this case, we exported a stratified random sample of 14,000 images and provided an additional CSV file with the images actually contained in our dataset. That is, for these seven LULC classes, we provide these 2 CSV files:

    • A CSV file that contains all exported images for this class
    • A CSV file that contains all images available for this class at spatial purity of 100%, both the ones exported and the ones not exported, in case the user wants to export them. These CSV filenames end with "including_non_downloaded_images".

    To clearly state the geographical coverage of images available in this dataset, we included in the version v2.1, a compressed folder called "Geographic_Representativeness.zip". This zip-compressed folder contains a csv file for each LULC class that provides the complete list of countries represented in that class. Each csv file has two columns, the first one gives the country code and the second one gives the number of images provided in that country for that LULC class. In addition to these 29 csv files, we provided another csv file that maps each ISO Alpha-2 country code to its original full country name.

    © Sentinel2GlobalLULC Dataset by Yassir Benhammou, Domingo Alcaraz-Segura, Emilio Guirado, Rohaifa Khaldi, Boujemâa Achchab, Francisco Herrera & Siham Tabik is marked with Attribution 4.0 International (CC-BY 4.0)

  20. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Commonwealth of Australia (Geoscience Australia) (2007). GEODATA TOPO 250K Series 3 (Google Earth format) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-cfc7-7506-e044-00144fdd4fa6
Organization logo

GEODATA TOPO 250K Series 3 (Google Earth format)

Explore at:
www:link-1.0-http--linkAvailable download formats
Dataset updated
Jan 1, 2007
Dataset provided by
Geoscience Australiahttp://ga.gov.au/
Area covered
Description

PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.

GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.

GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.

Product Specifications

Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation

Coverage: National (Powerlines not available in South Australia)

Currency: Data has a currency of less than five years for any location

Coordinates: Geographical

Datum: Geocentric Datum of Australia (GDA94)

Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB

Release Date: 26 June 2006

Search
Clear search
Close search
Google apps
Main menu