100+ datasets found
  1. a

    Data from: Google Earth Engine (GEE)

    • sdgs-amerigeoss.opendata.arcgis.com
    • data.amerigeoss.org
    • +4more
    Updated Nov 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://sdgs-amerigeoss.opendata.arcgis.com/app/google-earth-engine-gee
    Explore at:
    Dataset updated
    Nov 29, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  2. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    United States
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  3. p

    Google Earth Engine

    • pigma.org
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Google Earth Engine [Dataset]. https://www.pigma.org/geonetwork/srv/search?type=software
    Explore at:
    Dataset updated
    Aug 31, 2022
    Description

    Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers, and developers use Earth Engine to detect changes, map trends, and quantify differences on the Earth's surface. Earth Engine is now available for commercial use, and remains free for academic and research use.

  4. f

    Community prevalence of chronic respiratory symptoms in rural Malawi:...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hastings T. Banda; Rachael Thomson; Kevin Mortimer; George A. F. Bello; Grace B. Mbera; Rasmus Malmborg; Brian Faragher; S. Bertel Squire (2023). Community prevalence of chronic respiratory symptoms in rural Malawi: Implications for policy [Dataset]. http://doi.org/10.1371/journal.pone.0188437
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hastings T. Banda; Rachael Thomson; Kevin Mortimer; George A. F. Bello; Grace B. Mbera; Rasmus Malmborg; Brian Faragher; S. Bertel Squire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malawi
    Description

    BackgroundNo community prevalence studies have been done on chronic respiratory symptoms of cough, wheezing and shortness of breath in adult rural populations in Malawi. Case detection rates of tuberculosis (TB) and chronic airways disease are low in resource-poor primary health care facilities.ObjectiveTo understand the prevalence of chronic respiratory symptoms and recorded diagnoses of TB in rural Malawian adults in order to improve case detection and management of these diseases.MethodsA population proportional, cross-sectional study was conducted to determine the proportion of the population with chronic respiratory symptoms that had a diagnosis of tuberculosis or chronic airways disease in two rural communities in Malawi. Households were randomly selected using Google Earth Pro software. Smart phones loaded with Open Data Kit Essential software were used for data collection. Interviews were conducted with 15795 people aged 15 years and above to enquire about symptoms of chronic cough, wheeze and shortness of breath.ResultsOverall 3554 (22.5%) participants reported at least one of these respiratory symptoms. Cough was reported by 2933, of whom 1623 (55.3%) reported cough only and 1310 (44.7%) combined with wheeze and/or shortness of breath. Only 4.6% (164/3554) of participants with chronic respiratory symptoms had one or more of the following diagnoses in their health passports (patient held medical records): TB, asthma, bronchitis and chronic obstructive pulmonary disease)ConclusionsThe high prevalence of chronic respiratory symptoms coupled with limited recorded diagnoses in patient-held medical records in these rural communities suggests a high chronic respiratory disease burden and unmet health need.

  5. Digital Geologic-GIS Map of Russell Cave National Monument and Vicinity,...

    • catalog.data.gov
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Russell Cave National Monument and Vicinity, Alabama (NPS, GRD, GRI, RUCA, RUCA digital map) adapted from a U.S. Geological Survey Professional Paper map by Hack (1966) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-russell-cave-national-monument-and-vicinity-alabama-nps-grd-gr
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of Russell Cave National Monument and Vicinity, Alabama is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ruca_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ruca_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ruca_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (ruca_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ruca_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ruca_geology_metadata_faq.pdf). Please read the ruca_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ruca_geology_metadata.txt or ruca_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. Digital Geologic-GIS Map of Moores Creek National Battlefield, North...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina (NPS, GRD, GRI, MOCR, MOCR digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Owens (1989) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-moores-creek-national-battlefield-north-carolina-nps-grd-gri-m
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Unpublished Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (mocr_geology.gdb), a 10.1 ArcMap (.mxd) map document (mocr_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (mocr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (mocr_geology_gis_readme.pdf). Please read the mocr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mocr_geology_metadata.txt or mocr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Moores Creek National Battlefield.

  7. d

    Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2020). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://datasets.ai/datasets/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    33, 57Available download formats
    Dataset updated
    Mar 27, 2020
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Guisguis Port Sariaya, Quezon, Mississippi, United States
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. GEODATA TOPO 250K Series 3 (Google Earth format)

    • ecat.ga.gov.au
    • researchdata.edu.au
    Updated Jan 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2007). GEODATA TOPO 250K Series 3 (Google Earth format) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-cfc7-7506-e044-00144fdd4fa6
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jan 1, 2007
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.

    GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.

    GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.

    Product Specifications

    Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation

    Coverage: National (Powerlines not available in South Australia)

    Currency: Data has a currency of less than five years for any location

    Coordinates: Geographical

    Datum: Geocentric Datum of Australia (GDA94)

    Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB

    Release Date: 26 June 2006

  9. M

    Map App Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Map App Report [Dataset]. https://www.archivemarketresearch.com/reports/map-app-558844
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global map application market is experiencing robust growth, driven by the increasing penetration of smartphones, rising demand for location-based services, and the integration of advanced features like augmented reality and real-time traffic updates. Let's assume a 2025 market size of $15 billion, considering the significant investment and expansion in this sector. With a Compound Annual Growth Rate (CAGR) of 12% projected for the period 2025-2033, the market is poised to reach approximately $45 billion by 2033. This growth is fueled by several key trends: the development of more sophisticated navigation systems incorporating AI, the surge in the popularity of ride-sharing services heavily reliant on map apps, and the expanding use of maps in various industries such as logistics and delivery services. While factors like data privacy concerns and the competitive landscape pose some restraints, the overall outlook remains positive, driven by continuous innovation and increasing user adoption across both general and enterprise segments. The market is segmented by operating system (Android, iOS, Others) and user type (General, Enterprise), reflecting the diverse applications and user needs catered to by these apps. Geographic expansion is another significant factor, with North America and Europe currently leading the market, but substantial growth potential in Asia Pacific and other emerging regions. The competitive landscape is highly dynamic, with established players like Google Maps and Waze vying for market share alongside specialized players like OsmAnd and Citymapper catering to niche needs. The ongoing development of offline map functionality, improved accuracy, and enhanced user interfaces are key factors in maintaining user engagement and attracting new users. Further growth will depend on the ability of companies to leverage emerging technologies such as 5G and edge computing to deliver faster and more reliable location services. The integration of map apps with other services, creating seamless user experiences across various platforms and applications, presents a key area of future development. The continuous expansion of the market reflects a fundamental human need for navigation and location-based information which is amplified by the ever-increasing interconnected world.

  10. D

    Digital Map Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Digital Map Market Report [Dataset]. https://www.marketreportanalytics.com/reports/digital-map-market-88590
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services (LBS) across various sectors, including transportation, logistics, and e-commerce, is a primary driver. Furthermore, the proliferation of smartphones and connected devices, coupled with advancements in GPS technology and mapping software, continues to fuel market growth. The rising demand for high-resolution, real-time mapping data for autonomous vehicles and smart city initiatives also significantly contributes to market expansion. Competition among established players like Google, TomTom, and ESRI, alongside emerging innovative companies, is fostering continuous improvement in map accuracy, functionality, and data accessibility. This competitive landscape drives innovation and lowers costs, making digital maps increasingly accessible to a broader range of users and applications. However, market growth is not without its challenges. Data security and privacy concerns surrounding the collection and use of location data represent a significant restraint. Ensuring data accuracy and maintaining up-to-date map information in rapidly changing environments also pose operational hurdles. Regulatory compliance with differing data privacy laws across various jurisdictions adds another layer of complexity. Despite these challenges, the long-term outlook for the digital map market remains positive, driven by the relentless integration of location intelligence into nearly every facet of modern life, from personal navigation to complex enterprise logistics solutions. The market's segmentation (although not explicitly provided) likely includes various map types (e.g., road maps, satellite imagery, 3D maps), pricing models (subscriptions, one-time purchases), and industry verticals served. This diversified market structure further underscores its resilience and potential for sustained growth. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  11. d

    Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from North Carolina Geological Survey unpublished digital data and maps by Coffey and Nickerson (2008) [Dataset]. https://datasets.ai/datasets/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-24000-scale-
    Explore at:
    33, 57Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Cape Lookout, North Carolina
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. H

    Aridity Index Mapper Google Earth Engine App

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fitsume T. Wolkeba; Brad Peter (2024). Aridity Index Mapper Google Earth Engine App [Dataset]. http://doi.org/10.4211/hs.e5c0e11d49d24762a7edc82e1adea70c
    Explore at:
    zip(7.7 KB)Available download formats
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    HydroShare
    Authors
    Fitsume T. Wolkeba; Brad Peter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2016 - Dec 31, 2021
    Area covered
    Description

    The aridity index also known as the dryness index is the ratio of potential evapotranspiration to precipitation. The aridity index indicates water deficiency. The aridity index is used to classify locations as humid or dry. The evaporation ratio (evaporation index) on the other hand indicates the availability of water in watersheds. The evaporation index is inversely proportional to water availability. For long periods renewable water resources availability is residual precipitation after evaporation loss is deducted. These two ratios provide very useful information about water availability. Understating the powerful potential of the aridity index and evaporation ratio, this app is developed on the Google Earth Engine using NLDAS-2 and MODIS products to map temporal variability of the Aridity Index and Evaporation ratio over CONUS. The app can be found at https://cartoscience.users.earthengine.app/view/aridity-index.

  13. D

    Digital Map Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Digital Map Software Report [Dataset]. https://www.marketresearchforecast.com/reports/digital-map-software-535451
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jul 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map software market is experiencing robust growth, driven by the increasing demand for location-based services across various sectors. The market's expansion is fueled by the proliferation of smartphones, the rise of autonomous vehicles, and the growing adoption of GIS (Geographic Information System) technology in industries like logistics, urban planning, and transportation. A compound annual growth rate (CAGR) of, let's assume, 12% over the forecast period (2025-2033) indicates a significant expansion. This growth is further amplified by ongoing technological advancements, such as improved mapping accuracy through AI and machine learning, and the integration of 3D mapping capabilities. The market size in 2025 is estimated at $15 billion, reflecting a substantial increase from previous years. This figure is based on an analysis of available market reports and expert estimates, considering factors such as market penetration, technological advancements, and economic growth. Key players like Apple, Google, and TomTom are leading the market, leveraging their existing technological strengths and extensive user bases. However, smaller specialized companies are also gaining traction through innovation and niche market penetration. Despite the rapid growth, the market faces certain constraints, including data security concerns, the high cost of development and maintenance of accurate maps, and the need for continuous updates to reflect real-time changes in infrastructure and environment. Segment analysis reveals strong growth in sectors like automotive navigation and GIS applications, highlighting the diverse applications driving market expansion. Regional variations are expected, with North America and Europe maintaining significant market share, although the Asia-Pacific region is anticipated to show substantial growth. The study period of 2019-2033 provides a comprehensive overview, showcasing the market's evolution and future trajectory.

  14. H

    Web-based GIS for spatiotemporal crop climate niche mapping

    • dataverse.harvard.edu
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    B. G. Peter; J. P. Messina; Z. Lin (2020). Web-based GIS for spatiotemporal crop climate niche mapping [Dataset]. http://doi.org/10.7910/DVN/UFC6B5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    B. G. Peter; J. P. Messina; Z. Lin
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5

    Description

    Web-based GIS for spatiotemporal crop climate niche mapping Interactive Google Earth Engine Application—Version 2, July 2020 https://cropniche.cartoscience.com https://cartoscience.users.earthengine.app/view/crop-niche Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # CropSuit-GEE Authors: Brad G. Peter (bpeter@ua.edu), Joseph P. Messina, and Zihan Lin Organizations: BGP, JPM - University of Alabama; ZL - Michigan State University Last Modified: 06/28/2020 To cite this code use: Peter, B. G.; Messina, J. P.; Lin, Z., 2019, "Web-based GIS for spatiotemporal crop climate niche mapping", https://doi.org/10.7910/DVN/UFC6B5, Harvard Dataverse, V1 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine crop climate suitability geocommunication and map export tool designed to support agronomic development and deployment of improved crop system technologies. This content is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Sustainable Intensification through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by USAID under Cooperative Agreement No. AID-OAA-L-14-00006. ------------------------------------------------------------------------------------------------------------------------- Summarization of input options: There are 14 user options available. The first is a country of interest selection using a 2-digit FIPS code (link available below). This selection is used to produce a rectangular bounding box for export; however, other geometries can be selected with minimal modification to the code. Options 2 and 3 specify the complete temporal range for aggregation (averaged across seasons; single seasons may also be selected). Options 4–7 specify the growing season for calculating total seasonal rainfall and average season temperatures and NDVI (NDVI is for export only and is not used in suitability determination). Options 8–11 specify the climate parameters for the crop of interest (rainfall and temperature max/min). Option 12 enables masking to agriculture, 13 enables exporting of all data layers, and 14 is a text string for naming export files. ------------------------------------------------------------------------------------------------------------------------- ••••••••••••••••••••••••••••••••••••••••••• USER OPTIONS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• */ // CHIRPS data availability: https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD // MOD11A2 data availability: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2 var country = 'MI' // [1] https://en.wikipedia.org/wiki/List_of_FIPS_country_codes var startRange = 2001 // [2] var endRange = 2017 // [3] var startSeasonMonth = 11 // [4] var startSeasonDay = 1 // [5] var endSeasonMonth = 4 // [6] var endSeasonDay = 30 // [7] var precipMin = 750 // [8] var precipMax = 1200 // [9] var tempMin = 22 // [10] var tempMax = 32 // [11] var maskToAg = 'TRUE' // [12] 'TRUE' (default) or 'FALSE' var exportLayers = 'TRUE' // [13] 'TRUE' (default) or 'FALSE' var exportNameHeader = 'crop_suit_maize' // [14] text string for naming export file // ••••••••••••••••••••••••••••••••• NO USER INPUT BEYOND THIS POINT •••••••••••••••••••••••••••••••••••••••••••••••••••• // Access precipitation and temperature ImageCollections and a global countries FeatureCollection var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017') .filterMetadata('country_co','equals',country) var precip = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD').select('precipitation') var temp = ee.ImageCollection('MODIS/006/MOD11A2').select(['LST_Day_1km','LST_Night_1km']) var ndvi = ee.ImageCollection('MODIS/006/MOD13Q1').select(['NDVI']) // Create layers for masking to agriculture and masking out water bodies var waterMask = ee.Image('UMD/hansen/global_forest_change_2015').select('datamask').eq(1) var agModis = ee.ImageCollection('MODIS/006/MCD12Q1').select('LC_Type1').mode() .remap([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0]) var agGC = ee.Image('ESA/GLOBCOVER_L4_200901_200912_V2_3').select('landcover') .remap([11,14,20,30,40,50,60,70,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230], [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) var cropland = ee.Image('USGS/GFSAD1000_V1').neq(0) var agMask = agModis.add(agGC).add(cropland).gt(0).eq(1) // Modify user input options for processing with raw data var years = ee.List.sequence(startRange,endRange) var bounds = region.geometry().bounds() var tMinMod = (tempMin+273.15)/0.02 var tMaxMod = (tempMax+273.15)/0.02 //...

  15. P

    Professional Map Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Professional Map Services Report [Dataset]. https://www.archivemarketresearch.com/reports/professional-map-services-55520
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The professional map services market is experiencing robust growth, projected to reach $625.6 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 7.0% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services across diverse sectors like utilities, construction, transportation, and government is a primary driver. Advanced mapping technologies, including AI-powered mapping and real-time data integration, are enhancing the accuracy and functionality of map services, leading to increased demand. Furthermore, the growing need for precise mapping data for infrastructure planning, urban development, and disaster management is significantly contributing to market growth. The market segmentation reveals a strong reliance on consulting and advisory services, alongside significant demand for deployment and integration, and ongoing support and maintenance. Competition is fierce, with established players like Google, TomTom, and Esri vying for market share alongside emerging innovative companies specializing in niche applications. Geographic expansion is also a key aspect, with North America and Europe currently holding significant market share, but Asia-Pacific exhibiting rapid growth potential driven by infrastructure development and increasing technological adoption. The market's future trajectory appears bright, anticipating continued growth driven by technological advancements and expanding application areas. The integration of Internet of Things (IoT) data into mapping solutions presents a substantial opportunity for market expansion. The increasing reliance on autonomous vehicles and drone technology will further fuel demand for highly accurate and detailed mapping data. However, challenges remain, including data security concerns and the need for robust data management infrastructure. The competitive landscape necessitates continuous innovation and strategic partnerships to secure market share and capitalize on emerging opportunities. The ongoing development of standardized mapping data formats and protocols will play a crucial role in facilitating market growth and interoperability.

  16. Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity,...

    • catalog.data.gov
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado (NPS, GRD, GRI, ROMO, ROMO digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Braddock and Cole (1990) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-rocky-mountain-national-park-and-vicinity-colorado-nps-grd-gri
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Rocky Mountains, Colorado
    Description

    The Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (romo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (romo_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (romo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (romo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (romo_geology_metadata_faq.pdf). Please read the romo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (romo_geology_metadata.txt or romo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. I

    Interactive Map Creation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Interactive Map Creation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/interactive-map-creation-tools-1418201
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $7.8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of location-based services (LBS) and geographic information systems (GIS) across industries like real estate, tourism, logistics, and urban planning is a major catalyst. Businesses are increasingly leveraging interactive maps to enhance customer engagement, improve operational efficiency, and gain valuable insights from geospatial data. Furthermore, advancements in mapping technologies, including the integration of AI and machine learning for improved data analysis and visualization, are contributing to market growth. The accessibility of user-friendly tools, coupled with the decreasing cost of cloud-based solutions, is also making interactive map creation more accessible to a wider range of users, from individuals to large corporations. However, the market also faces certain challenges. Data security and privacy concerns surrounding the use of location data are paramount. The need for specialized skills and expertise to effectively utilize advanced mapping technologies may also hinder broader adoption, particularly among smaller businesses. Competition among established players like Mapbox, ArcGIS StoryMaps, and Google, alongside emerging innovative solutions, necessitates constant innovation and differentiation. Nevertheless, the overall market outlook remains positive, with continued technological advancements and rising demand for data visualization expected to propel growth in the coming years. Specific market segmentation data, while unavailable, can be reasonably inferred from existing market trends, suggesting a strong dominance of enterprise-grade solutions, but with substantial growth expected from simpler, more user-friendly tools designed for individuals and small businesses.

  18. Digital Bedrock Geologic-GIS Map of Weir Farm National Historical Park and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of Weir Farm National Historical Park and Vicinity, Connecticut (NPS, GRD, GRI, WEFA, WEFA_bedrock digital map) adapted from a Connecticut Geological and Natural History Survey Connecticut Natural Resources Atlas Series map by Rodgers (1985) and a Quadrangle Report map by Kroll (1969) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-weir-farm-national-historical-park-and-vicinity-connec
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Connecticut
    Description

    The Digital Bedrock Geologic-GIS Map of Weir Farm National Historical Park and Vicinity, Connecticut is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wefa_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wefa_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wefa_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (wefa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (wefa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wefa_bedrock_geology_metadata_faq.pdf). Please read the wefa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Connecticut Geological and Natural History Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wefa_bedrock_geology_metadata.txt or wefa_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. H

    A Google Earth Engine implementation of the Floodwater Depth Estimation Tool...

    • dataverse.harvard.edu
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brad Peter; Sagy Cohen; Ronan Lucey; Dinuke Munasinghe; Austin Raney (2024). A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) [Dataset]. http://doi.org/10.7910/DVN/JQ4BCN
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Brad Peter; Sagy Cohen; Ronan Lucey; Dinuke Munasinghe; Austin Raney
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. Please see the associated publications: 1. Peter, B.G., Cohen, S., Lucey, R., Munasinghe, D., Raney, A. and Brakenridge, G.R., 2020. Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for rapid and large scale flood analysis. IEEE Geoscience and Remote Sensing Letters, 19, pp.1-5. https://ieeexplore.ieee.org/abstract/document/9242297 2. Cohen, S., Peter, B.G., Haag, A., Munasinghe, D., Moragoda, N., Narayanan, A. and May, S., 2022. Sensitivity of remote sensing floodwater depth calculation to boundary filtering and digital elevation model selections. Remote Sensing, 14(21), p.5313. https://github.com/csdms-contrib/fwdet 3. Cohen, S., A. Raney, D. Munasinghe, J.D. Loftis J, A. Molthan, J. Bell, L. Rogers, J. Galantowicz, G.R. Brakenridge7, A.J. Kettner, Y. Huang, Y. Tsang, (2019). The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Natural Hazards and Earth System Sciences, 19, 2053–2065. https://doi.org/10.5194/nhess-19-2053-2019 4. Cohen, S., G. R. Brakenridge, A. Kettner, B. Bates, J. Nelson, R. McDonald, Y. Huang, D. Munasinghe, and J. Zhang (2018), Estimating Floodwater Depths from Flood Inundation Maps and Topography, Journal of the American Water Resources Association, 54 (4), 847–858. https://doi.org/10.1111/1752-1688.12609 Sample products and data availability: https://sdml.ua.edu/models/fwdet/ https://sdml.ua.edu/michigan-flood-may-2020/ https://cartoscience.users.earthengine.app/view/fwdet-gee-mi https://alabama.app.box.com/s/31p8pdh6ngwqnbcgzlhyk2gkbsd2elq0 GEE implementation output: fwdet_gee_brazos.tif ArcMap implementation output (see Cohen et al. 2019): fwdet_v2_brazos.tif iRIC validation layer (see Nelson et al. 2010): iric_brazos_hydraulic_model_validation.tif Brazos River inundation polygon access in GEE: var brazos = ee.FeatureCollection('users/cartoscience/FwDET-GEE-Public/Brazos_River_Inundation_2016') Nelson, J.M., Shimizu, Y., Takebayashi, H. and McDonald, R.R., 2010. The international river interface cooperative: public domain software for river modeling. In 2nd Joint Federal Interagency Conference, Las Vegas, June (Vol. 27). Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # FwDET-GEE calculates floodwater depth from a floodwater extent layer and a DEM Authors: Brad G. Peter, Sagy Cohen, Ronan Lucey, Dinuke Munasinghe, Austin Raney Emails: bpeter@ua.edu, sagy.cohen@ua.edu, ronan.m.lucey@nasa.gov, dsmunasinghe@crimson.ua.edu, aaraney@crimson.ua.edu Organizations: BP, SC, DM, AR - University of Alabama; RL - University of Alabama in Huntsville Last Modified: 10/08/2020 To cite this code use: Peter, Brad; Cohen, Sagy; Lucey, Ronan; Munasinghe, Dinuke; Raney, Austin, 2020, "A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET-GEE)", https://doi.org/10.7910/DVN/JQ4BCN, Harvard Dataverse, V2 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDETv2.0) [1] developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. GitHub Repository (ArcMap and QGIS implementations): https://github.com/csdms-contrib/fwdet ------------------------------------------------------------------------------------------------------------------------- How to run this code with your flood extent GEE asset: User of this script will need to update path to flood extent (line 32 or 33) and select from the processing options. Available DEM options (1) are USGS/NED (U.S.) and USGS/SRTMGL1_003 (global). Other options include (2) running the elevation outlier filtering algorithm, (3) adding water body data to the inundation extent, (4) add a water body data layer uploaded by the user rather than using the JRC global surface water data, (5) masking out regular water body data, (6) masking out 0 m depths, (7) choosing whether or not to export, (8) exporting additional data layers, and (9) setting an export file name....

  20. Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington (NPS, GRD, GRI, OLYM, OLYM digital map) adapted from Washington Division of Geology and Earth Resources Open File Report maps by Gerstel, Logan, Schasse and Lingley and other Washington Division of Geology and Earth Resources Staff (2000, 2003 and 2005) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-olympic-national-park-and-vicinity-washington-nps-grd-gri-olym
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (olym_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (olym_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (olym_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (olym_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (olym_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (olym_geology_metadata_faq.pdf). Please read the olym_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Washington Division of Geology and Earth Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (olym_geology_metadata.txt or olym_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://sdgs-amerigeoss.opendata.arcgis.com/app/google-earth-engine-gee

Data from: Google Earth Engine (GEE)

Related Article
Explore at:
Dataset updated
Nov 29, 2018
Dataset authored and provided by
AmeriGEOSS
Description

Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

Search
Clear search
Close search
Google apps
Main menu